Theory overview of heavy baryon EDMs

Joan Ruiz-Vidal

Division of Particle and Nuclear Physics Department of Physics Lund University

December 11, 2023

3rd workshop on electromagnetic dipole moments of unstable particles IJCLab, Orsay

Matter-antimatter imbalance

Sakharov conditions (1967):

Ingredients to generate matter-antimatter imbalance:

Baryon number violation

 $X \to X' + B$

• C and CP violation

 $X \to X' + B
eq ar{X} o ar{X}' + ar{B}$

Out of thermal equilibrium

 $X \rightarrow X' + B \neq X' + B \rightarrow X$

Matter-antimatter imbalance

• The SM has the three ingredients, but not the needed quantities

$$\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \bigg|_{\text{observed}} = 6 \cdot 10^{-10} \qquad \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \bigg|_{\text{SM}} \approx 10^{-18}$$

- New sources of CP violation
 - \Rightarrow Present in many BSM theories
 - \Rightarrow Tested in particle experiments through CPV observables

Electric dipole moments

The EDM violates separately T and P \Rightarrow **CP violation**

Joan Ruiz-Vidal (Lund University)

Theory overview of heavy baryon EDMs

Map of the EDM field

Big picture

Big picture

Connection New Physics to heavy baryon EDM

- NP particles integrated out below Λ_{NP}
- Wilson coefficients (WC) of the SM Effective Field Theory (SMEFT) capture the high-energy dynamics

Big picture

Connection New Physics to heavy baryon EDM

- NP particles integrated out below Λ_{NP}
- Wilson coefficients (WC) of the SM Effective Field Theory (SMEFT) capture the high-energy dynamics
- Same for Low Energy EFT (LEFT)
- Strictly, different EFT below each mass threshold
- Contributions to EDMs: flavour-diagonal CP-violating effective operators

Effective operators

• Quark dipole operators. Λ_c^+ EDM uniquely sensitive to valence charm quarks

Other contributions are suppressed (higher-order or ruled out by nEDM)

Effective operators

• Quark dipole operators. Λ_c^+ EDM uniquely sensitive to valence charm quarks

Other contributions are suppressed (higher-order or ruled out by nEDM)

Charm EDM in BSM theories

Standard Model has its leading contribution at 3-loop level

Generic New Physics

Size of dipole operators of dimension 5, originating from NP $(\Lambda_{\rm NP}=1{\rm TeV})$

$$-d_crac{i}{2}\,ar{c}\sigma^{\mu
u}\gamma_5c\,F_{\mu
u}\ o\ d_c\simrac{ extsf{vev}}{\Lambda_{
m NP}^2}e\sim10^{-18}
m e
m cm$$

In concrete NP theories, with phenomenological and theoretical constraints, different story ... Let's see some examples

Charm EDM in BSM theories II

Colour octet scalars (Manohar-Wise model)

• New scalars with colour charge (8,2,1/2)

$$\mathcal{L}_{Y} = -\sum_{i,j=1}^{3} \left[\zeta_{U} Y_{ij}^{d} \overline{Q}_{L_{i}} S d_{R_{j}} + \zeta_{D} Y_{ij}^{u} \overline{Q}_{L_{i}} \widetilde{S} u_{R_{j}} + \text{h.c.} \right]$$

- Predictive theory. Motivated by MFV and GUTs
- Quark (C)EDMs at 1-loop in [Martinez, Valencia, 1612.00561]
- Quark (C)EDMs at 2-loop in [Gisbert, Miralles, JRV, 2111.09397]
- Parameter constraints w/o the nEDM, [X.Q.Li et al., 1504.00839]
 [Eberhardt, Miralles, Pich, 2106.12235]
 allow maximum value

$$d_b \sim 10^{-19} {
m ecm} \;, \;\; d_c \sim 10^{-21} {
m ecm}$$

One loop

Charm EDM in BSM theories III

Scalar leptoquarks

- R_2 leptoquarks (3,2,7/6) generate EDMs at 1 loop
- Solution to $b \to c \tau \bar{\nu}_{\tau}$ and (old) $b \to s \ell \bar{\ell}$ anomalies [Bečirević et al., 1806.05689]
- Charm EDM extremely relevant to assess the CPV in connection to $R_{D^{(*)}}$ [Dekens, de Vries, Jung, Vos, 1809.09114]

$$d_c \sim 10^{-21}~ecm$$

Minimal Supersymmetric model (MSSM)

- Large charm EDM via gluino loops [Aydin, Erkarslan, hep-ph/0204238]
 - Updating this reference with LHC lower limits on the masses

$$d_c \sim 10^{-17}~
ightarrow~d_c \sim 10^{-20} e {
m cm}$$

BLMSSM

- MSSM where B and L gauged symmetries break spontaneously at the TeV scale.
- Many new CPV phases. Charm and top EDM studied in [Zhao, Feng et al., 1610.07314]
 - Accounting for current d_t bounds

$$d_c \sim 10^{-17} \
ightarrow d_c \sim 10^{-19} ecm$$

• Recent analysis [Yang, Feng et al., 1910.05868]

Indirect bounds on charm EDM

Indirect bounds on charm EDM

Indirect bounds on charm EDM

- What is the maximum *d_c* allowed, regardless of the NP model?
- Up to 2019, best in the literature [Sala, 1312.2589]

 $|d_c| < 4.4 imes 10^{-17}
m ecm$ $| ilde{d}_c| < 1.0 \cdot 10^{-22}
m cm$

 Connection to nEDM is (more) straightforward from chromo-EDM

Bounds on charm EDM

[Gisbert, JRV, 1905.02513]

EDM may contribute to CEDM?

Renormalization group equations

$$\mu \frac{d}{d\mu} \vec{C}(\mu) = \hat{\gamma}^T \vec{C}(\mu) \qquad \vec{C} = \begin{pmatrix} d_q \\ \vec{d}_q \end{pmatrix}$$
$$\hat{\gamma} = \begin{pmatrix} 8C_F & \mathbf{0} \\ 8C_F & 16C_F - 4N \end{pmatrix}$$

Bounds on charm EDM

[Gisbert, JRV, 1905.02513]

EDM may contribute to CEDM?

Renormalization group equations

$$\mu \frac{d}{d\mu} \vec{C}(\mu) = \hat{\gamma}^T \vec{C}(\mu) \qquad \vec{C} = \begin{pmatrix} d_q \\ \vec{d}_q \end{pmatrix}$$
$$\gamma_s^{(0)} = \begin{pmatrix} 8C_F & 0 \\ 8C_F & 16C_F - 4N \end{pmatrix}$$

Expansion of the anomalous dimension matrix

$$\hat{\gamma} = \frac{\alpha_s}{4\pi} \gamma_s^{(0)} + \left(\frac{\alpha_s}{4\pi}\right)^2 \gamma_s^{(1)} + \frac{\alpha_e}{4\pi} \gamma_e^{(0)} + \dots$$

• First nonzero term at $\mathcal{O}(\alpha_e)$.

$$\gamma_e^{(0)} = \left(\begin{array}{cc} * & 8 \\ * & * \end{array}\right)$$

*: negligible wrt $\mathcal{O}(\alpha_s)$

Bounds on charm EDM

[Gisbert, JRV, 1905.02513]

Joan Ruiz-Vidal (Lund University)

Theory overview of heavy baryon EDMs

December 11, 2023 12 / 22

Bounds on charm EDM II

Limits from light quark EDM and eN interaction

[Ema, Gao, Pospelov, 2205.11532]

Contribution of d_c

- To 3g-1γ operators, to light-quark EDM, to neutron EDM
- To 2γ-2g operators, to electron-nucleon, to paramagnetic molecule ThO (used for d_e)

 $|d_c| < 6 imes 10^{-22}$ ecm

Limits from electron EDM

[Ema, Gao, Pospelov, 2207.01679]

- Contribution of d_c
 - To 4 γ operators (light-by-light scattering), to electron EDM

Other limits

Bound	Ref.	Measurement	Method
$ d_c < 8.9 imes 10^{-17} \ { m ecm}$	[Escribano:1993×r]	$\Gamma(Z ightarrow c\overline{c})$	Measurement at the Z peak (LEP). Weights electic (d_c) and weak (d_c^w) dipole moments through model-dependent relations.
$ d_c < 5 imes 10^{-17}~ecm$	[Blinov:2008mu]	$e^+e^- ightarrow c\overline{c}$	The total cross section (from the LEP combination <code>[ALEPH:2006bhb]</code>) is enhanced by the charm EDM vertex $c\overline{c}\gamma$.
$ d_{\rm c} < 3 imes 10^{-16}~{\rm ecm}$	[Grozin:2009jq]	electron EDM	Considers contribution of d_c into d_e through light-by-light scattering (three-loop) diagrams.
$ d_c < 1 imes 10^{-15} \ ecm$	[Grozin:2009jq]	neutron EDM	Similar approach than Ref. $[{\tt Sala:2013osa}]$ with different treatment of diverging integrals and more conservative assumptions.
$ d_{\rm c} < 4.4 imes 10^{-17}~{ m ecm}$	[Sala:2013osa]	neutron EDM	Considers contribution of d_c into d_d via W^{\pm} loops. Expressions from Ref. [CorderoCid:2007uc].
$ d_c < 3.4 imes 10^{-16}~ m ecm$	[Sala:2013osa]	$BR(B \rightarrow X_s \gamma)$	Considers contributions of d_c into the Wilson coefficient C_7 .
$ d_c < 1.5 imes 10^{-21} \ ecm$	[Gisbert:2019ftm]	neutron EDM	Renormalization group mixing of d_c into \tilde{d}_c .
$ d_c < 6 imes 10^{-22}~ecm$	[Ema:2022pmo]	neutron EDM	Contribution of d_c to $3g$ - 1γ operators, to light-quark, to neutron EDM
$ d_c < 1.3 imes 10^{-20} \ e \mathrm{cm}$	[Ema:2022pmo]	electron EDM	Contribution of d_c to $2\gamma\text{-}2g$ operators, to electron-nucleon, to paramagnetic molecule ThO

Joan Ruiz-Vidal	(Lund University)
-----------------	-------------------

Connection to quark EDM

$$\boldsymbol{\mathcal{L}}d_{\Lambda_c^+}=d_c$$
?

- Estimates not always reliable. See e.g. ΔA_{CP}(D → ππ, KK)
- Theoretical uncertainties are key to understand the constraining power of heavy baryon EDM searches

Quark constituent model

- Precursor of QCD. Sea quarks and gluons dressing the quarks, $m_{u,d} \approx 300 \text{MeV}$ (\neq quarks of QCD)
- Phenomenological successes e.g. $\mu_n = -\frac{2}{3}\mu_p$
- Charm baryon EDM: $d_{\Lambda_c^+} = d_c$

Naive Dimensional Analysis (NDA)

- Dimensionality of couplings + loop suppression factors
- Estimations within an order of magnitude
- Charm baryon EDM: $d_{\Lambda_c^+}\sim~\pm~d_c~\pm~rac{e}{4\pi} ilde{d}_c$

Nonperturbative QCD methods II

Chiral Perturbation Theory

- EFT based on the symmetries of QCD $SU(3)_C$, $SU(3)_L \times SU(3)_R^{\ddagger}$, \mathcal{P} , \mathcal{C} $\frac{1}{2}$ provided $m_q \rightarrow 0$
- Chiral symmetry spontaneously broken (m_q ≠ 0):
 Octet mesons as Goldstone bosons

 $SU(3)_L \times SU(3)_R \longrightarrow SU(3)_V$

- Extensions
 - Adding resonances
 - Adding baryons
 - Adding heavy quarks
 - Adding CPV interactions
- Systematic frameworks developed. Many new interactions and unknown Low Energy Constants (LECs)
- Bottom baryons [de Vries, Hanhart, Severt, Ünal, Meißner, 2111.13000] Charm baryons [Ünal, 2306.03639]
 → Baryon EDM in terms of LECs (loops →) then estimated these with NDA

Joan Ruiz-Vidal (Lund University)

Theory overview of heavy baryon EDMs

Remarkable success describing mesonoctet interactions

Nonperturbative QCD methods III

[Georgi, Phys.Lett.B 240 (1990) 447]

Heavy Quark Effective Theory

[Eichten, Hill, Phys.Lett.B 234 (1990) 511]

- Considers heavy quark $m_Q
 ightarrow \infty$ with constant 4-velocity v^μ
- Consequences on angular momentum of hadron components. Antiquark described by different field \rightarrow new spin-flavour symmetries
- High predictive power: spectrum, masses, decays

Sum Rules

[Introduction: de Rafael, hep-ph/9802448]

- Hadronic form factors from quark interactions. Needs: dispersion relation optical theorem something else
- No general recipe
- Neutron EDM from QCD Sum Rules. Reference for many years [Pospelov, Ritz, hep-ph/0010037]

$$d_n = (1 \pm 0.5)(1.4(d_d - 0.25d_u) + 1.1e(\tilde{d}_d + 0.5\tilde{d}_u))$$

Allows systematic treatment of uncertainties

Joan Ruiz-Vidal (Lund University)

Nonperturbative QCD methods IV

Lattice QCD

- Numerical method to solve the functional integral of QCD
- Discretize space time and simulate extended wave functions
- Challenging for charm baryons
 - Large lattice to fit the baryon
 - Small spacing to resolve small c quark wave function
- State-of-the-art computations
 - Huge simulations and data analyses
 - Extrapolation to the continuum limit
 - Physical masses
 - Rigorous systematic uncertainties
- nEDM: Uncertainty improvement wrt sum rules e.g. [Cirgliano et al, 1808.07597]

$$d_n = (0.784 \pm 0.030)d_d - (0.204 \pm 0.015)d_u + \dots$$

• Charm baryon EDM "doable if there is interest..."

EDM of strange Λ hyperon

- General discussion on the theory interpretation applies
- Current A EDM limit [Fermilab, Phys. Rev. D23 (1981) 814]

 $|d_{\Lambda}| < 1.8 \cdot 10^{-16} e {
m cm}$

- Enhanced strange quark contribution, $d_{\Lambda} = d_s$ (quark model)
- Strange EDM also contributes to neutron EDM [Cirgliano et al, 1808.07597]

 $d_n = (0.784 \pm 0.030)d_d - (0.204 \pm 0.015)d_u + (0.0027 \pm 0.0016)d_s$

• neutron EDM constraint [PSI-nEDM, 2001.11966]

$$|d_n| < 1.8 \cdot 10^{-26} ecm$$

• Improved accuracy on A, Σ^+ , Ω^- MDM very valuable to test NLO in different QCD approaches

Conclusions

- Charm baryon EDM **never tested before**. Sensitivity of this experiment $\delta(d_{\Lambda_{r}^{+}}) \approx 10^{-17} ecm$ [2010.11902]
- Interpretation in terms of NP needs advanced hadronic methods Theory uncertainty key to assess the restrictive power
- nEDM experiments have a 70-year lead on us
- Challenging to beat indirect bounds on charm quark EDM
- Charm baryon MDM at the few % will provide answers to the validity of different QCD methods
- Long way for charm EDM... the first step is the most important one

