Discussion session: fixed target physics case for forward detector

See also my presentation at last LHCb U2 heavy-ions: tracker and physics workshop (12th -13th April 2022) :

https://indico.ijclab.in2p3.fr/event/8156/contributions/25479/attachme nts/18651/24999/WorkshopLHCb.pdf

Which setup?

- Data taking with proton/Pb beams?
- Target versatility? From H to heavy nuclei?
- Luminosity that can be collected?
- Possibility for polarized target ?
- Particle detection only in the forward region in the lab? Extension to mid-rapidity in the lab?

Fixed target mode at LHC: kinematics

- □ New energy range with the same LHC accelerator
 - ➤ Same $\sqrt{s_{NN}}$ for pH, pA → interesting for R_{pA}
 - Same $\sqrt{s_{NN}}$ for PbH, PbA in between SPS and RHIC top energies
- □ Access to the high Feynman- x_F domain (access to partons with $x_2 \rightarrow 1$ in the target)
 - ➢ Backward physics accessible with forward detectors in the lab. Caveat: end of phase space slightly outside LHCb acceptance for J/ψ and D mesons
- Target species versatility: atomic number dependence of nuclear effects, isospin study with Deuteron and ³He targets
- Target polarization and spin physics programme
- Outstanding luminosities as large as collider case with dense targets

Energy range

7 TeV proton beam on a fixed target

Nucleon and nuclear structure at large-x

1/ The exploration of the high-momentum (x) frontiers in nucleon and nuclei with specific emphasis on the sea quark, gluon and heavy quark content, together with implications for astrophysics

- Structure of nucleon and nuclei at high-x poorly known
- ➤ The origin of the EMC effect in nuclei is still not understood → Study a possible gluon EMC effect ?
- > The Existence of a possible non-perturbative source of c or b quarks in the proton \rightarrow Important for HE neutrino and CR physics

Impact of uncertainties on charm content of the proton on neutrino flux atmospheric neutrino fluxes is main background for observation of cosmic neutrino in the PEV range

Compilation of gluon nPDFs uncertainties

 \rightarrow + Explore A-dependence with several target types

Drell-Yan to probe nuclear PDFs

□ In pA FT collisions, similar kinematic coverage as for pp case

Unique acceptance of LHCb compared to existing DY pA data (E866 & E772 @ Fermilab) used for nPDF fit

 \Box pXe simulation at Vs_{NN} = 115 GeV, L_{int} = 100 pb⁻¹, very large yields up to x₂ \rightarrow 1

 \Box DY contribution dominates over $c\bar{c}$ and $b\bar{b}$ production at backward rapidity (com. Back subtracted via evt. mix.)

Drell-Yan to probe nuclear PDFs

□ Impact from DY measurements on nPDFs evaluating via reweighting using R_{pXe} pseudo-data √s_{NN} = 115 GeV
 □ Significant decrease of nPDFs uncertainties for up and down quark at large-x

Uncertainty on nCTEQ15 nPDFs before and after reweighting using R_{pXe} pseudo-data

Associated J/ ψ + γ , J/ ψ + J/ ψ production and gluon PDF

- **Limited knowledge of gluon PDFs for** x > 0.5
- Abundant production of open heavy flavour and quarkonia expected at large-x to probe gluon PDF
- Associated J/ψ+γ and J/ψ+ J/ψ production dominated by gluon-gluon subprocess at large-x, probes requiring large luminosities, while single inclusive quarkonium production presumably dominated by heavy quark induced channels

Isolated $J/\psi + \gamma$	$\langle x_2 \rangle \sim rac{M_{\psi\gamma}}{\sqrt{s}} e^{-Y_{\psi\gamma}}$	$\sigma_{gg} imes \mathcal{B}_{\mu\mu}$ [fb]	$\sigma_{q\bar{q}} imes \mathcal{B}_{\mu\mu}$ [fb]	Counts/year
$ Y_{\psi\gamma}^{\rm c.m.s.} < 0.5$	0.10	<i>O</i> (100)	<i>O</i> (0.2)	<i>O</i> (1000)
$-1.5 < Y_{\psi\gamma}^{\text{c.m.s.}} < -0.5$	0.25	<i>O</i> (50)	<i>O</i> (0.2)	<i>O</i> (500)
$-2.5 < Y_{\psi\gamma}^{\text{c.m.s.}} < -1.5$	0.60	<i>O</i> (10)	<i>O</i> (0.04)	O (100)

$J/\psi + J/\psi$	$\langle x_2 \rangle \sim \frac{M_{\psi\psi}}{\sqrt{s}} e^{-Y_{\psi\psi}^{\mathrm{c.m.s.}}}$	$\sigma_{gg} imes \mathcal{B}^2_{\mu\mu}$ [fb]	$\sigma_{q\bar{q}} imes \mathcal{B}^2_{\mu\mu}$ [fb]	Counts/year
$4.5 < Y_{\psi\psi}^{\text{lab.}} < 5.0$	0.13	<i>O</i> (5)	O (1)	<i>O</i> (50)
$4.0 < Y_{\psi\psi}^{\text{lab.}} < 4.5$	0.29	<i>O</i> (50)	O (10)	<i>O</i> (500)
$3.5 < Y_{\psi\psi}^{\text{lab.}} < 4.0$	0.45	<i>O</i> (50)	O (10)	<i>O</i> (500)
$3.0 < Y_{\psi\psi}^{\text{lab.}} < 3.5$	0.60	<i>O</i> (10)	O (10)	O (100)
$2.5 < Y_{\psi\psi}^{\text{lab.}} < 3.0$	0.77	<i>O</i> (5)	<i>O</i> (2)	<i>O</i> (70)

CT14nlo gluon relative PDF uncertainty in proton

intrinsic charm in the proton

- Search for existence of non-perturbative source of charm (and beauty) quark in nucleon and nucleus, carrying a relevant fraction of its momentum (<u>possible evidence in Z+charm</u> <u>production at LHCb in pp collider mode, Giacomo Magni talk</u> <u>at QCD@LHC 2022</u>)
- → Relevant for PDFs/nPDFs relying on assumption that charm and beauty PDFs pertubatively generated by gluon splitting

Intrinsic charm modify the rate of several processes (eg. D mesons) at LHC energies in fixed-target mode, especially at large-x in a region where perturbative charm is suppressed

R. Maciula, talk at QCD@LHC 2022

8

Antiproton measurements to constrain models for Dark Matter searches

LHCb data now used to constrain models

- Antiproton cross section measurements in the GeV range useful to constrain modeling of conventional astrophysical sources, which are background for Dark Matter searches
- □ Good precision now from AMS measurements in 1-400 GeV range
- Need to reduce theoretical uncertainties on secondary antiproton production (created by high energy scatterings between interstellar matter and primary cosmic rays)

The study of the hot medium created in ultrarelativistic heavy-ion collisions with novel quarkonium and heavy-quark observables in a new energy domain, and with identified light hadrons down to the target-rapidity region

- Systematic studies of the medium properties with three experimental degrees of freedom : rapidity scan, different colliding systems, centrality dependence
- Rapidity scan at Vs_{NN} = 72 GeV with FT@ALICE can complement the RHIC beam energy scan from Vs_{NN} = 62.4 GeV down to 10-20 GeV
- A novel way to search for the QCD critical point and probe the nature of the phase transition to confined partons

V. Begun et al., Phys. Rev. C98 n°3 (2018) 034905

+ collectivity in small systems with heavy quarks, factorization of CNM effects from pA to AA with Drell-Yan...

Search for collectivity in small systems at low energy

- □ Order of magnitude luminosity larger than at RHIC → access to very high multiplicity events in pH collisions
- □ With L_{int} = 1.1 nb⁻¹, reaching already events with 15 times the average pp multiplicity (MPI + collective studies for heavy quarks)
- □ Statistical precision on the D⁰ meson v_2 in pPb at $\sqrt{s_{NN}} = 115$ GeV already at the sub-percent level for $p_T < 3$ GeV/c

Back up

Considerations about luminosities

□ LHC parameters assumptions for the computation of the beam flux on target

	Proton beam	Lead beam	Upgraded lead beam
Number of bunches in the LHC (N_b)	2808	592	1232
Number of particles per bunch (N_p)	1.2×10^{11}	7.0×10^{7}	1.8×10^{8}
LHC Revolution frequency (v) [Hz]		11245	
Particle flux in the LHC (ϕ_{beam}) [s ⁻¹]	3.6×10^{18}	4.7×10^{14}	2.5×10^{15}
LHC yearly running time (Δt) [s]	107	106	10 ⁶
Nominal energy of the beam (E _{beam}) [TeV]	7	2.76	2.76
Fill duration considered ($\Delta \tau$) [h]	10	5	5
Usable particle flux in the halo ($\phi_{\text{usable halo}}$) [s ⁻¹]	5×10^{8}	10 ⁵	5×10^{5}

- □ 1m long storage cell
- □ Gas flux levelled with Pb beam (considering no more than a 15% consumption of the beam)
- Assuming 40MHz max interaction rate in pp and 5MHz in PbPb for LHCb
- □ Max yearly luminosity reachable : $L_{int} pH = 10 fb^{-1}$, $L_{int} pXe = 310 pb^{-1}$, $L_{int} PbH = 120 nb^{-1}$, $L_{int} PbXe = 30 nb^{-1}$
- □ SMOG2 expectations: $L_{int} pH = 150 pb^{-1}$, $L_{int} pXe = 22 pb^{-1}$, $L_{int} PbH = 10 nb^{-1}$, $L_{int} PbAr = 60 nb^{-1}$

		LHCb							
			Proton beam ($\sqrt{s_{NN}} = 115 \text{ GeV}$)			Pb beam ($\sqrt{s_{NN}} = 72 \text{ GeV}$)			
Target		L	$\sigma_{\rm inel.}$	$\Gamma_{inel.}$	$\int \mathcal{L}$	L	$\sigma_{ m inel.}$	$\Gamma_{inel.}$	$\int \mathcal{L}$
		$[cm^{-2} s^{-1}]$	[mb]	[kHz]	[pb ⁻¹]	$[cm^{-2} s^{-1}]$	[mb]	[kHz]	$[nb^{-1}]$
Internal gas target Storage Cell	H^{\uparrow}	4.3×10^{30}	39	168	43	5.6 ×10 ²⁶	1.8	1	5.6×10^{-1}
	H_2	1.0×10^{33}	39	40000	1.0×10^4	1.2×10^{29}	1.8	212	1.2×10^2
	\mathbf{D}^{\uparrow}	4.3×10^{30}	72	309	43	5.6×10^{26}	2.2	1	5.6×10^{-1}
	³ He [↑]	3.4×10^{32}	117	40000	3.4×10^{3}	4.7×10^{28}	2.5	118	47
	Xe	3.1×10^{31}	1300	40000	3.1×10^{2}	2.3×10^{28}	6.2	186	23
	H^{\uparrow}	9.2×10^{32}	39	35880	9.2×10^{3}	1.2×10^{29}	1.8	212	1.2×10^{2}
	H_2	1.0×10^{33}	39	40000	1.0×10^{4}	1.2×10^{29}	1.8	212	1.2×10^{2}
	\mathbf{D}^{\uparrow}	5.6×10^{32}	72	40000	5.6×10^{3}	8.8×10^{28}	2.2	194	88
	³ He [↑]	1.3×10^{33}	117	40000	1.3×10^{4}	8.3 ×10 ²⁸	2.5	206	83
	Xe	3.1×10^{31}	1300	40000	3.1×10^{2}	3.0×10^{28}	6.2	186	30
Internal solid target Wire on beam Target halo	C (500 µm)	2.8×10^{30}	271	760	28	5.6 ×10 ²⁶	3.3	2	5.6×10^{-1}
	Ti (500 μm)	1.4×10^{30}	694	972	14	2.8×10^{26}	4.7	1	2.8×10^{-1}
	W (500 µm)	1.6×10^{30}	1700	2720	16	3.1×10^{26}	6.9	2	3.1×10^{-1}
Beam splitting solid	$\rm NH_3^{\uparrow}$	7.2×10^{31}	420	30240	7.2×10^2	1.4×10^{28}	19	259	14
	ND_3^\uparrow	7.2×10^{31}	519	37368	7.2×10^{2}	1.4×10^{28}	22	314	14
	C (5 mm)	2.8×10^{31}	271	7600	2.8×10^{2}	5.6 ×10 ²⁷	3.3	18	5.6
	Ti (5 mm)	1.4×10^{31}	694	9720	1.4×10^{2}	2.8×10^{27}	4.7	13	2.8
target	W (5 mm)	1.6×10^{31}	1700	27200	1.6×10^{2}	3.1×10^{27}	6.9	21	3.1
	Target Gas-Jet Storage Cell Wire Target E1039 Unpol- arised solid target	Target H^{\uparrow} H_2 D^{\uparrow} B^{\uparrow} I^{\uparrow}	Target Proton b Target \mathcal{L} $[cm^{-2} s^{-1}]$ $[cm^{-2} s^{-1}]$ H^{\uparrow} 4.3×10^{30} H_2 1.0×10^{31} D^{\uparrow} 4.3×10^{30} Bas -Jet D^{\uparrow} 4.3×10^{30} Gas -Jet D^{\uparrow} 3.4×10^{31} $3He^{\uparrow}$ 3.4×10^{31} A_{10}^{\uparrow} 3.4×10^{31} A_{10}^{\uparrow} 1.0×10^{31} Bas A_{10}^{\uparrow} 1.0×10^{31} A_{10}^{\uparrow} 1.3×10^{31} 1.3×10^{31} Ae^{\uparrow} 3.1×10^{31} 3.1×10^{31} Ae^{\uparrow} 3.1×10^{31} 1.4×10^{30} Ae^{\uparrow} 1.6×10^{31} 1.4×10^{31} Ae^{\uparrow} Ae^{\uparrow} 1.4×10^{31} Ae^{\uparrow} Ae^{\uparrow} Ae° Ae^{\uparrow} Ae°	Proton beam ($\sqrt{2}$) Target \mathcal{L} $\sigma_{inel.}$ $[cm^{-2} s^{-1}]$ [mb] H^{\uparrow} 4.3×10^{30} 39 H_2 1.0×10^{33} 39 Gas -Jet D^{\uparrow} 4.3×10^{30} 72 $3He^{\uparrow}$ 3.4×10^{30} 72 $^{3}He^{\uparrow}$ 3.4×10^{30} 72 $^{3}He^{\uparrow}$ 3.4×10^{32} 117 Xe 3.1×10^{31} 1300 P^{\uparrow} 9.2×10^{32} 39 H^{\uparrow} 9.2×10^{32} 39 H_2 1.0×10^{33} 39 D^{\uparrow} 5.6×10^{32} 72 $^{3}He^{\uparrow}$ 1.3×10^{31} 117 Xe 3.1×10^{31} 1300 M_1^{\uparrow} 2.8×10^{31} 117 Xe 3.1×10^{31} 170 M_1^{\uparrow} 7.2×10^{31} 694 M_1^{\uparrow} 7.2×10^{31} 420 ND_3^{\uparrow} 7.2×10^{31}	Proton became ($\sqrt{s_{NN}}$ = 11) Target \mathcal{L} $\sigma_{inel.}$ $\Gamma_{inel.}$ $[cm^{-2} s^{-1}]$ $[mb]$ $[kHz]$ B^{\uparrow} 4.3×10^{30} 39 168 H_2 1.0×10^{33} 39 40000 Gas -Jet D^{\uparrow} 4.3×10^{30} 72 309 Gas -Jet D^{\uparrow} 3.4×10^{32} 117 40000 $3^{3}He^{\uparrow}$ 3.4×10^{32} 117 40000 Xe 3.1×10^{31} 39 40000 B^{\uparrow} 9.2×10^{32} 39 35880 H_2 1.0×10^{33} 39 40000 B^{\uparrow} 1.3×10^{31} 1300 40000 $3^{3}He^{\uparrow}$ 1.3×10^{31} 117 40000 M^{\uparrow} 1.3×10^{31} 117 40000 M° 1.5×10^{31} 117 40000 M° 1.5×10^{31} 117 40000 M° 1.4×10^{3	Item term Item term Item term Item term Item term Item term Target \mathcal{L} $\sigma_{inel.}$ $\Gamma_{inel.}$ $\int \mathcal{L}$ Item term $\sigma_{inel.}$ $\Gamma_{inel.}$ $\int \mathcal{L}$ \mathcal{L} $\sigma_{inel.}$ $\Gamma_{inel.}$ $\int \mathcal{L}$ $\Gamma_{inel.}$ $\Gamma_{inel.}$ $\Gamma_{inel.}$ $\Gamma_{inel.}$ $\int \mathcal{L}$ Π^{\uparrow} 4.3×10^{30} 39 40000 1.0×10^4 Λ_{I}^{\uparrow} 3.4×10^{32} 3.9 40000 3.4×10^3 Λ_{I}^{\uparrow} 3.4×10^{31} 3.9 40000 3.4×10^3 Λ_{I}^{\uparrow} 1.3×10^{31} 3.9 40000 3.1×10^2 Λ_{I}^{\uparrow} 1.3×10^{31} 1.3 \times 10^3 <td>$\begin{array}{c c c c c c } \mbox{Target} & \mu &$</td> <td>Target From $(\sqrt{s_{NN}} = 11 \le GeV)$ Poton $(\sqrt{s_{NN}} = 11 \le GeV)$ Poton $(\sqrt{s_{NN}} = 11 \le GeV)$ Target \mathcal{L} $\sigma_{inel.}$ $\Gamma_{inel.}$ $\int \mathcal{L}$ \mathcal{L} $\sigma_{inel.}$ $(m^{-2} s^{-1})$ (m) $(kl2)$ (pb^{-1}) $(m^{-2} s^{-1})$ (m) Gas-Jet H^{\uparrow} 4.3×10^{30} 39 40000 1.0×10^4 1.2×10^{29} 1.8 Gas-Jet D^{\uparrow} 4.3×10^{30} 72 309 433 5.6×10^{26} 2.2 $^{3}He^{\uparrow}$ 3.4×10^{31} 1300 40000 3.1×10^2 2.3×10^{28} 2.5 $^{3}He^{\uparrow}$ 3.4×10^{31} 1300 40000 3.1×10^2 1.8 H^{\uparrow} 9.2×10^{32} 39 35880 9.2×10^3 1.2×10^{29} 1.8 H^{\uparrow} 9.2×10^{31} 39 40000 1.0×10^4 1.2×10^2 1.8 H^{\uparrow} 1.0×10^{31} 139 40000 $1.3 \times$</td> <td>$\begin{array}{c c c c c c c } \mbox{Term} & \begin{tabular}{ c c c c c c } \hline Proton & & (\$</td>	$ \begin{array}{c c c c c c } \mbox{Target} & \mu & $	Target From $(\sqrt{s_{NN}} = 11 \le GeV)$ Poton $(\sqrt{s_{NN}} = 11 \le GeV)$ Poton $(\sqrt{s_{NN}} = 11 \le GeV)$ Target \mathcal{L} $\sigma_{inel.}$ $\Gamma_{inel.}$ $\int \mathcal{L}$ \mathcal{L} $\sigma_{inel.}$ $(m^{-2} s^{-1})$ (m) $(kl2)$ (pb^{-1}) $(m^{-2} s^{-1})$ (m) Gas -Jet H^{\uparrow} 4.3×10^{30} 39 40000 1.0×10^4 1.2×10^{29} 1.8 Gas -Jet D^{\uparrow} 4.3×10^{30} 72 309 433 5.6×10^{26} 2.2 $^{3}He^{\uparrow}$ 3.4×10^{31} 1300 40000 3.1×10^2 2.3×10^{28} 2.5 $^{3}He^{\uparrow}$ 3.4×10^{31} 1300 40000 3.1×10^2 1.8 H^{\uparrow} 9.2×10^{32} 39 35880 9.2×10^3 1.2×10^{29} 1.8 H^{\uparrow} 9.2×10^{31} 39 40000 1.0×10^4 1.2×10^2 1.8 H^{\uparrow} 1.0×10^{31} 139 40000 $1.3 \times$	$ \begin{array}{c c c c c c c } \mbox{Term} & \begin{tabular}{ c c c c c c } \hline Proton & & ($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Spin and 3D nucleon structure

Advance our understanding of the dynamics and spin of quarks and gluons inside (un)polarised nucleons

- ▶ First hint by COMPASS that $\ell_{g} \neq 0$
- Access information on the orbital motion of the partons inside bound hadrons via Single Spin Asymmetries (Sivers effect)
 - Sivers effects : correlation between the parton transverse momentum $k_{\rm T}$ and the proton spin
 - Gluon Sivers effect at large x_F with gluon sensitive probes
 - Quark Sivers effect at large x_F with Drell-Yan
- \succ Test TMD factorization formalism \rightarrow sign change of A_N between SIDIS and DY

Probing the gluon Sivers effect: Open Heavy Flavours

Gluon Sivers effect: correlation between the gluon transverse momentum k_T **and the proton spin**

- No analogous process to DY to probe the gluon content, being both experimentally clean and theoretically well-controlled
- \Box Large yields in FT@LHC for several gluon sensitive probes (Open HF, quarkonia ~ 10⁶ Y and 10⁹ J/ Ψ per year)
- Gluon TMDs more « universal », gluon Sivers functions can be reduced to 2 independent ones

 \Box « LHCb-like detector », precision at percent level on D⁰ A_N for p_T \leq 5 GeV/c, similar conclusion for B \rightarrow J/ ψ

Probing the gluon sivers effect: Quarkonium

- \Box Measurement of bottomonium A_N statistically doable with FT@LHC
- \Box Large charmonium yields \rightarrow precise access to gluon content of the proton over a much wider x-range than at RHIC
- □ Several possible explanations for current A_N measurements compatible with zero (gluon Sivers function might be zero, J/ Ψ production mechanism via colour-octet transitions...) → new precise measurements needed

 Comparison with 2 models ; Generalised parton model (GPM), Color Gauge invariant version of GPM model (CGI)
 Study can be extended to : C-even quarkonium (access to tri-gluon correlation functions with η_c) Quarkonium associated production (TMD evolution by tuning the mass of the final state)

Exclusive quarkonium photoproduction to probe the GPDs

- □ Exclusive photoproduction studied in « UPC » probes the internal structure of hadrons in terms of GPDs → related to the OAM carried by quarks and gluons via Ji's sum rule
- \Box Exclusive J/ Ψ production sensitive to gluon GPDs, STSA sensitive to yet unknown GPD E_g (importance piece of spin sum rule)
- \Box Enough precision at FT@LHC to perform a first extraction of E_g

