

UNIVERSITÀ DEGLI STUDI DI MILANO

Università di Genova

Simulations for a forward physics experiment

Elisabetta Spadaro Norella

University and INFN of Milan, and University of Genova

3rd workshop of EDM of unstable particles IJCLab, Orsay 12th December '23

IR3 experiment' schedule

Run 3 2025 Phase 0: "Proof-of-Principle" (PoP) experiment

- asked for by LHCb & approved by LHCC
- To measure channeling at TeV energies scale

⇒ if successful

Run 4 2029

Phase 1:

setup to perform first physics measurements: Charm baryons EDM/MDM with O(10¹³ PoT), charm physics?

Phase 2:

beyond

setup to ultimate the physics measurements: EDM/MDM measurements with full sensitivity

Simulation of IR3 detector

On behalf of Simulation working group: J. Grabowsky, H. Miao, T. Xing, S. Cesare, S. Jaimes, P. Gandini, Z. Wang, J. Fu, N. Neri,

C. Maccani, F. Martinez Vidal, M. Ferro-luzzi.

Elisabetta Spadaro Norella - Università di Genova

Spectrometer for IR3

Magnets

orbit correction dipole magnets at IR3

Magnet	L [m]	B [T]	
MBW	3.4	1.4	
MCBW	1.7	1.1	

Tracking stations

- Tiles of **VELOPix**: TDR $55x55 \,\mu m^2$ pixel, pixel hit rate 600 MHz/cm², 12 μ m hit resolution
- Roman Pots: ALFA Roman Pots

https://edms.cern.ch/panoramas/viewer?fov=90.00&id=36409858&lat=-27.06&lon=241.01 VELO module

ALFA Roman Pot

Goals of simulations

- 1. Optimization of the detector design for EDM measurement
- Magnet: acceptance of orbit correction dipole magnets
- Tracker stations:
 - VeloPix technology is suitable for expected **occupancy**?
 - position and lever-arm to optimize **invariant mass resolution**
- 2. **Background discrimination:** discrimination of Λ_c signal from combinatorial, unchanneled Lc, **peaking bkg**, ie D⁺, D_s. \Rightarrow covered by Jascha & Roger
- 3. Extending the physics case beyond EDM:
 - detector optimization for photoproduction studies

Goals of simulations

- 1. Optimization of the detector design for EDM measurement
- Magnet: acceptance of orbit correction dipole magnets
- Tracker stations:
 - VeloPix technology is suitable for expected **occupancy**?
 - position and lever-arm to optimize **invariant mass resolution**
- 2. **Background discrimination:** discrimination of Λ_c signal from combinatorial, unchanneled Lc, **peaking bkg**, ie D⁺, D_s. \Rightarrow covered by Jascha & Roger
- 3. Extending the physics case beyond EDM:
 - detector optimization for photoproduction studies

Outline of today's talk

 Geometry design
 Tracker occupancy
 Acceptance: for different
 detector layout

2. RICH occupancy

3. Photoproduction studies

Beam spot simulations

Simulations performed by Kay et al

Crystal 1 is aligned with the secondary halo (multiturn simulation – pencil beam)

A plot of the distribution at the target / crystal 2 entrance. You can see the main spot of channelled protons below. Fewer particles appear in total as some are lost in the formation of the secondary halo (forming the halo requires protons to impact the primary collimator; some are absorbed).

	peak / no. part	Mean	Sigma	3 Sigma
Х	1270 ± 10	0.03 ± 0.01 mm	0.30 ± 0.01 mm	0.90 mm
Хр	1280 ± 10	0.80 ± 0.11 μrad	10.0 ± 0.1 µrad	30.0 µrad
Y	760 ± 3	4.30 ± 0.01 mm	0.21 ± 0.01 mm	0.64 mm
Yp	1130 ± 5	23.0 ± 0.1 μrad	2.91 ± 0.01 μrad	8.74 µrad

Tracker optimization: layout 1

Geometry: layout 1

Target: W, 2cm long, 8x2mm **Crystal:** Si, 7cm long, 7mrad bending angle

4 Roman Pots of TOTEM

- 2 trackers per RP, at distance of 2cm
- 2 Velo tiles per station, horizontal
 - y position: distance dependent
- First tracking station: at 68 cm
- Lever arm: from 0.4m to 1m

Beam pipe: Al elliptical shape, 2.1cm x 2.9cm \rightarrow enlarged inside/after the magnet to 2.5x5 cm

Magnet MCBW (1.1 T, 1.7m): iron box

Bore: 5.2x14cm

constant field inside bore

Tracker occupancy

thanks to Sara Cesare for latest plots

Minimum bias events: Flux of **10⁶ p/s**, on 2 cm W target

• Rate in Velo Superpixel (4x2 pixels)

Rate
$$= N_{
m hits}/cm^2/s$$

Before magnet: <250 MHz/cm²

After magnet: <10 MHz/cm²

Simulation parameters:

- Production cut = 0.7mm
- No tracking cuts
- Physics list: FTFP_BERT EM

Maximum pixel hit rate: 6.6KHz

Possibility to run with flux of **10⁷ p/s:**

- Analog pile-up < 3MHz
- Readout logic: data transfer rate < 13MHz

 \Rightarrow within VeloPix/TimePix3 allowed maximum rate (600 MHz/cm²)

 Λ_{c} signal

 Λ_{c} input spectrum:

- generated using Pythia and with channeling (Biryukov's book), thanks to Fernando and Sergio
- imported in DDG4 as General Particle Source

Number of Velo tiles:

- 2 before magnet
- 2 or 4 after magnet (to cover forward region)

Detector acceptance

Goal: acceptance downstream the magnet using VELO tiles

 \rightarrow to read out tiles vertically inside Roman Pots: 2 horizontal Velo tiles

Beam pipe inside magnet reduces the acceptance \rightarrow interactions of particles with beam pipe

Detector acceptance

Goal: acceptance downstream the magnet using VELO tiles

 \rightarrow to read out tiles vertically inside Roman Pots: 2 horizontal Velo tiles

Front-end

hybrid

Detector acceptance

Goal: acceptance downstream the magnet using VELO tiles

 \rightarrow to read out tiles vertically inside Roman Pots: 2 horizontal Velo tiles

Front-end

hybrid

Modifying RP geometry?

Low acceptance due to interactions with beampipe and RP tube after magnet:

- RP tube radius: 4cm (nominal).
 - Enlarge it to 5cm or 6cm?
- Beampipe radius
 - inside magnet: **r=5cm**
 - after magnet: **r=5-6cm**

1 Nominal : r _{RP tube} =4cm; r _{BP after} _{magnet} =5cm	53%
2: r _{RP tube} =4cm; r _{BP after magnet} =6cm	56%
3: r _{RP tube} =5cm; r _{BP after magnet} =5cm	71%
3: r _{RP tube} =5cm; r _{BP after magnet} =6cm	72%

Tracker areas: 2 Velo tiles before magnet/3 Velo tiles after magnet to cover forward region

Open questions: is it feasible to enlarge the RP support?

Tracker optimization: layout 2

Layout 2: Hamburg Beam pipe

Acceptance with 4 Velo tiles, in air: 72% \Rightarrow Gain in acceptance: from 50% to 70%

Next:

- Need to perform optics function simulations to verify feasibility and positions

Dedicated magnet

Optimization of design

Dedicated magnet: **B=4Tm** Tracker geometry: Hamburg beam pipe, lever-arm L=1m

- \Rightarrow Optimization of length and bore diameter
 - Bore > 6 cm, since beam pipe radius cannot be reduced below 3cm

Acceptance for dedicated magnet of 4Tm

- \Rightarrow Acceptance of **90%** for:
 - 1. B=4T, length=1m, bore = 8 cm
 - 2. B>4T and length<1m, bore = 6cm

 \Rightarrow increase from ~70% to 90% of acceptance with Hamburg beampipe configuration

 \Rightarrow Factor of 2 improvement in invariant mass resolution

Possible solution for Phase II

RICH detector

RICH detector: occupancy

Dedicated talk by R. Forty

RICH filled with He, 5m long

- N photo-electrons = 12
- SiPM:
 - submm pixel size \rightarrow R&D for RICH LHCbU2: 1mm²
 - coverage: 11 cm of diameter, at y>8 cm

 \Rightarrow Possibility to use a longer length (10m) with 1mm² pixel

1. Occupancy from mb interactions: few tracks per event (<10) impinge on SiPM Rate of layer 8

2. no background from unchanneled Lc (prob < 0.02%)

3. Since it is very close to the beam, how many charged particles from the main/deflected beam impinge on the SiPM?

→ We would need **beam dynamics simulations**: z=6m from target, y>8cm

J/ψ photoproduction

Inclusive Vector Meson photoproduction

Motivation is to perform feasibility studies for:

- VM photoproduction cross-section at threshold
- search for pentaquarks in prompt production
 ⇒ improve upon recent GlueX results (J/ψ yield= 2270)
 [Phys. Rev. C 108, 025201]

Process characteristics:

- very forward production
- exclusive process: only J/ψ and p
- high cross-section due to high target Z
- high luminosity due to target Z

Our experiment at IR3

- \Rightarrow covers a pseudorapidity range from 5 to 8
- \Rightarrow hermetic detector
- \Rightarrow ~10 nb, to be determined with simulations
- \Rightarrow about 10²⁹ cm²s⁻¹

J/ψ photoproduction

1. **Cross-section estimates** for pW and PbW at 7 TeV beam energy

2. Detector optimization

- a. Resolutions on angular and momentum quantities for reconstruction of $m(J/\psi p)$
- b. Muon optimization
- c. Trackers
- 3. Acceptance
- 4. Expected yields

Cross-sections

Physics Letters B 805 (2020) 135447

Cross-section estimate with STARLight MC link

- 1. pW interactions. Beam energy = 7 TeV
- 2. PbW interactions. Beam energy = 7 TeV x Z
 - 1. **pW: σ= 42 nb,** y in range 3<y<8

 \Rightarrow Dominant process is incoherent photon-p interaction, with photon emitted by target (proportional to Z)

2. PbW: σ=1.89 mub, y in range 2<y<6.5

Cross-sections

Cross-section estimate with STARLight MC link

- 1. pW interactions. Beam energy = 7 TeV
- 2. PbW interactions. Beam energy = 7 TeV x Z

Comparison with GlueX: cross-section in range 4.2<W<4.8 GeV

1. **pW: σ= 0.5 nb**

2. PbW: σ=36 nb, y in range 2<y<6.5

Photoproduction kinematics

Invariant mass resolution depends on the angle between the Jpsi and the scattered proton

$$m^2(J/\psi p) = m_{J/\psi}^2 + m_p^2 + 2(E_p E_{J/\psi} - 2|p_p||p_{J/\psi}|cos(heta_{J/\psi p}))$$

Conservation of 4-momentum, neglecting E_x:

$$p_{p,fin} = p_{p,in} - p_{J/\psi}$$

 \Rightarrow the invariant mass depends on p_{J/w}, the deflection angle of proton and $cos(heta_{J/\psi p})$

What is the resolution on these quantities?

Resolutions

see talk by N. Neri

Resolutions

talk by N. Neri

Angles: - θ_p <250 µrad - $[\theta_{J/\psi p}]$ < 2.5 mrad	⇒	$egin{aligned} {f Resolution} \ \sigma_{ heta} &\sim 10 \mu rad \ \sigma &< 10 \mu rad \cdot D(=2m) = 20 \mu m \end{aligned}$	⇒	Detector Pixel stations before magnet: - Hit reso: $\sigma = 55 \mu m / \sqrt{12} = 15 \mu m$ - Multiple scattering <5 µm
Momenta: - <p<sub>J/psi> ~ 500 GeV</p<sub>	⇒	$\sigma_p/p=rac{2p}{0.3BLD}\sigma_s$	⇒	Trackers + Muon stations $= 1.7\% \sigma_s = 10 \mu m, D = 1m$
Resolution on invariant mass:		$m^2(J/\psi p) = m_{J/\psi}^2 + m_p^2 + 2(E_p E_{J/\psi})$, -2	$ p_p p_{J/\psi} cos(heta_{J/\psi p}))$

Dominant term:

$$\Delta cos heta_{J/\psi p} = rac{1}{2m} p_{J/\psi} p_p sin heta_{J/\psi p} \sigma_{ heta_{J/\psi p}} \sim 15 MeV$$

 \Rightarrow To be checked with full reconstruction

Muon detector

Technologies:

- **Si strip detector:** UT sensor of 10x10 cm²
 - pitch=180 μ m $\rightarrow \sigma$ =180/sqrt(12)= 52 μ m
- **MWPC: Gas mixture:** Ar:CF4:CO2 [0.6:0.1:0.3], 5mm
 - pad= 20x25mm²
 - chamber= $48x20 \text{ cm}^2 \Rightarrow 24 \text{ x } 8 \text{ pads}$

Interleaved with iron filters, 90 cm thick (to be optimized)

Possible design solutions:

- 1. First station of Si strip with area of 40x20cm² + 3 stations of MWPC
- 2. 4 stations of Si, with reduced area (about 20x20 cm², 4 /5 UT stations per layer)
- 3. 4 stations of MWPC

 \Rightarrow angular reso of 1 mrad

Muon occupancy

 \Rightarrow If we want to go to 10⁷ p/s, we need to build full Si sensors or optimize the filter length

Veto exclusive events

Tag events which contain only 3 tracks: 1 proton and 2 muons

⇒ Necessary to build an hermetic detector:

- Tracking stations below the beam pipe to enlarge acceptance in the forward region?
- Scintillator downstream at a distance of 100m, such as Hershel

Inelastic interactions: initial proton can interact with target and crystal after being produced

 \Rightarrow probability of having inelastic interaction with W and Si

$$egin{aligned} P_{inel} &= (1 - e^{-z_{target}/\lambda_W}) + (1 - e^{-z_{Cry}/\lambda_{Si}}) = 0.32 \ 1 - P_{inel} &= 0.68 \end{aligned}$$

 \Rightarrow this factor needs to be multiplied by the acceptance efficiency

Possible solution to overcome this problem:

dedicated run with thinner W target and no crystal

Simulations

Events: 10000 J/ ψ events in DD4hep **Stations geometry:**

- **Position:** first station at z=15m
- Outside beam pipe:
 - 2 beampipes at about 20 cm
 - radius reduced to 2.5 cm

Pseudorapidity coverage:

Very forward acceptance: 4.5<y<7

Acceptance

Scenario 1: 1st plane of Si strip (40x20cm²) + MWPC (1m²)

- **Position:** first station at z=12-20m

Acceptance = number of J/ψ reconstructed using tracker stations before magnet and muon stations (at least 6 hits out of 8)

 \rightarrow Reconstruction with tracker downstream magnet: acceptance drops to ~1%

- Enlarge active area and/or place trackers below main beam
- \rightarrow To consider the multiplicative factor of 68% due to inelastic interactions

Expected yield	
----------------	--

 $egin{array}{lll} \star &
ho = 19.3 \ g/cm^3 \ N_A = 6.02 \cdot 10^{23} \ l = 2 \ cm \ M = 184g \ /mol \end{array}$

Luminosity:

$$egin{aligned} \mathcal{L} &= heta_{target} \cdot \Phi = 1.26 \cdot 10^{29} cm^{-2} s^{-1} \ heta_{target} &= rac{N_A
ho l}{M} st \end{aligned}$$

Expected data-taking time:

- proton run (/year): 6.85x10⁶ s
- Pb run (~1 week): 6x10⁵ s

Integrated L: $\int \mathcal{L} = 0.89 \ pb^{-1}$ $\int \mathcal{L} = 0.076 \ pb^{-1}$

Promising yields:

- sum different data taking runs to collect high yields
- Pentaquark search with 10⁷ p/s

Estimated yield	σ [nb]	Flux	Int L [pb ⁻¹]	ε	Yield x ε
pW, J/ψ	42	10 ⁶ p/s	0.89	0.136	5'000/year
PbW, J/ψ	1890	10 ⁶ p/s	0.073	0.075	10'350/week
pW, J/ψ W<4.8GeV	0.5	10 ⁷ p/s	8.9	0.136	1700/year
PbW, J/ψ W<4.8GeV	72	10 ⁶ p/s	0.073	0.075	400/week

Conclusions

Optimization of detector design:

- Trackers: Velo pixel technology is suitable for PoP and future experiment
- Acceptance:
 - Best configuration: usage of hamburg beam pipe \Rightarrow acceptance of 70%
 - For future: with a dedicated magnet we could reach 90%

Photoproduction:

- Extending the physics case to cover forward production can enrich our project
- Requirements:
 - place trackers in front of the beam
 - build muon stations
- Yield estimates for P_c yield are promising compared to other experiments and good invariant mass resolution
- Next: finalize reconstruction of J/ψ and p

Thank you for the attention!

Backup slides

Code repositories

IR3Detector repository: link

- Geometry implementation
 - xml files
 - factories for subdetectors
- Simulation based on DDG4
 - python file

 \Rightarrow developer: myself, implementation and testing

IR3Detector ⊕ Project ID: 134709 ₺	
- 201 Commits 🖇 16 Branches 🛷 2 Tags 🗔 329.9 ME	Project Storage
Simulation for IR3 fixed target detector based on the DD	4hep framework
Merge branch 'geo_RomanPots' into 'main'	
Merge branch 'geo_RomanPots' into 'main' Elisabetta Spadaro Norella authored 12 hours ago	
Merge branch 'geo_RomanPots' into 'main' ••• Elisabetta Spadaro Norella authored 12 hours ago	
Merge branch 'geo_RomanPots' into 'main' ••• Elisabetta Spadaro Norella authored 12 hours ago	

IR3_ana_tool repository: link

- Event model (PODIO)
- Modules for data analysis
 - Occupancy
 - Reconstruction
 - Digitization

⇒ developers: Han, Tianyu from UCAS and Jascha from Bonn

Exit window geometry

Preliminary: Charm hadron yield

Decays: $D^+ \rightarrow K^-\pi^+\pi^+$, $D_{\mu}^+ \rightarrow K^-K^+\pi^+$, $\Lambda_{\mu}^- \rightarrow pK^-\pi^+$

Best configuration: Ge crystal, 5 mrad

D⁺ most abundant:

- thousands of events with flux of 10⁶ p/s (or 10000 with 10⁷ p/s) in few days
- D_s and Λ_c^+ : resolvable with reso < 50 MeV
 - thousand of events in ~ 2 months

We can do it!

- First measurement of EDM of Λ_{a}^{+} -
- study of the very forward region -

Flux on target 10⁶ p/s, crystal length 7 cm, target thickness 2 cm, MCBW magnet with RB= 2.5 cm

Si crystal 5 mrad bending D^+ D_s^+ Λ_c^+ 8 1 dav 109 16 1 month 3275 479 248 7mrad bending

Ge crysta

5	mrad	bending	

	D^+	D_s^+	Λ_c^+
1 day	616	94	21
1 month	18481	2807	645

 D^+

78

2334

 D_s^+

11

342

 Λ_{c}^{+}

114

7mrad bending

	D^+	D_s^+	Λ_c^+	
1 day	1.6	0.2	0.1	1 day
1 month	48	7	4	1 month

$J/\psi \& \psi(2S)$ cross-section measurement

 $J/\psi/\psi(2S)$ cross-section measurement in range complementary to GlueX, HERA & SLAC

HERA: Eur. Phys. J. C 24, 345–360 (2002)

- J/ψ cross-section: 20 < W < 150 GeV
- ψ(2S) cross-section: 307 events in 40<W<150GeV
- **SLAC**: PRL 35, 483 (1975)
 - J/ψ cross-section: 13< E_γ < 21 GeV, 5<W<6.5 GeV
 - 1200 J/psi

Luminosity:

$$egin{aligned} \mathcal{L} &= heta_{target} \cdot \Phi & heta_{target} &= rac{N_A
ho l}{M} \ &
ho = 19.3 \ g/cm^3 \ & N_A = 6.02 \cdot 10^{23} \ & l = 2 \ cm \ & M = 184g \ / mol \end{aligned}$$

Expected yield:

 $F=10^{6} \text{ p/s}, \text{ } \text{L} = 0.89 \text{ pb}^{-1} \text{ per year}$

	σ [nb]	Yield/year
J/ψ	42	37'000
ψ(2S)	0.76	670

Cross-sections

Cross-section estimates with STARLight MC link

- 1. pW interactions. Beam energy = 7TeV
- 2. PbW interactions. Beam energy = 7TeV x Z

1. **pW: σ= 42 nb,** y in range 3<y<8 Center-of-mass energy: 4.2<W<30 GeV

⇒ Dominant process is incoherent photon-p interaction, with photon emitted by target

2. PbW: σ=1.89 mub, y in range 2<y<6.5

