UNIVERSITÀ DEGLI STUDI di milano

Simulations for a forward physics experiment

Elisabetta Spadaro Norella University and INFN of Milan, and University of Genova

3rd workshop of EDM of unstable particles
12th December ' 23 IJCLab, Orsay

IR3 experiment' schedule

Run 3
2025

Phase 0: "Proof-of-Principle" (PoP) experiment

- asked for by LHCb \& approved by LHCC
- To measure channeling at TeV energies scale
\Rightarrow if successful

Run 4
2029
Phase 1:
setup to perform first physics measurements:
Charm baryons EDM/MDM with $\mathrm{O}\left(10^{13} \mathrm{PoT}\right)$, charm physics?

Phase 2:

beyond
setup to ultimate the physics measurements:
EDM/MDM measurements with full sensitivity

Simulation of IR3 detector

Simulation for the future experiment

- Detector geometry: DD4hep

Code repositories:

- IR3Detector repository: link
- IR3_ana_tool repository: link
- Generators:
- Pythia/Argantyr model
- Λ_{c} spectrum: Pythia+channeling parametrization
- Particle simulation: DDG4
- based on Geant4
- Tracking: GenFit (by Jascha)

Tracking station 1

- Event model (PODIO) \& analysis package (by Han and Tianyu)

On behalf of Simulation working group: J. Grabowsky, H. Miao, T. Xing, S. Cesare, S. Jaimes, P. Gandini, Z. Wang, J. Fu, N. Neri,
C. Maccani, F. Martinez Vidal, M. Ferro-luzzi.

Spectrometer for IR3

Magnets

- orbit correction dipole magnets at IR3

Magnet	L $[\mathbf{m}]$	B [T]
MBW	3.4	1.4
MCBW	1.7	1.1

Tracking stations

- Tiles of VELOPix: TDR $55 \times 55 \mu \mathrm{~m}^{2}$ pixel, pixel hit rate $600 \mathrm{MHz} / \mathrm{cm}^{2}, 12 \mu \mathrm{~m}$ hit resolution
- Roman Pots: ALFA Roman Pots

https://edms.cern.ch/panoramas/viewer?fov=90.00\&id=36409858\&lat=-27.06\&lon=241.01 VELO module

ALFA Roman Pot

Goals of simulations

1. Optimization of the detector design for EDM measurement

- Magnet: acceptance of orbit correction dipole magnets
- Tracker stations:
- VeloPix technology is suitable for expected occupancy?
- position and lever-arm to optimize invariant mass resolution

2. Background discrimination: discrimination of Λ_{c} signal from
combinatorial, unchanneled Lc, peaking bkg, ie $\mathrm{D}^{+}, \mathrm{D}_{\mathrm{s}} . \Rightarrow$ covered by Jascha \& Roger
3. Extending the physics case beyond EDM:

- detector optimization for photoproduction studies

Goals of simulations

1. Optimization of the detector design for EDM measurement

- Magnet: acceptance of orbit correction dipole magnets
- Tracker stations:
- VeloPix technology is suitable for expected occupancy?
- position and lever-arm to optimize invariant mass resolution

2. Background discrimination: discrimination of Λ_{c} signal from
combinatorial, unchanneled Lc, peaking bkg, ie $\mathrm{D}^{+}, \mathrm{D}_{\mathrm{s}^{.}} \Rightarrow$ covered by Jascha \& Roger
3. Extending the physics case beyond EDM:

- detector optimization for photoproduction studies

Outline of today's talk

1. Geometry design

Tracker occupancy Acceptance: for different detector layout
2. RICH occupancy
3. Photoproduction studies

Beam spot simulations

Simulations performed by Kay et al

Crystal 1 is aligned with the secondary halo (multiturn simulation - pencil beam) A plot of the distribution at the target / crystal 2 entrance. You can see the main spot of channelled protons below. Fewer particles appear in total as some are lost in the formation of the secondary halo (forming the halo requires protons to impact the primary collimator; some are absorbed).

	peak / no. part	Mean	Sigma	3 Sigma
X	1270 ± 10	$0.03 \pm 0.01 \mathrm{~mm}$	$0.30 \pm 0.01 \mathrm{~mm}$	0.90 mm
Xp	1280 ± 10	$0.80 \pm 0.11 \mu \mathrm{rad}$	$10.0 \pm 0.1 \mu \mathrm{rad}$	$30.0 \mu \mathrm{rad}$
Y	760 ± 3	$4.30 \pm 0.01 \mathrm{~mm}$	$0.21 \pm 0.01 \mathrm{~mm}$	0.64 mm
Yp	1130 ± 5	$23.0 \pm 0.1 \mu \mathrm{rad}$	$2.91 \pm 0.01 \mu \mathrm{rad}$	$8.74 \mu \mathrm{rad}$

Tracker optimization: layout 1

Geometry: layout 1

Target: W, 2cm long, $8 x 2 \mathrm{~mm}$
Crystal: Si, 7cm long, 7mrad bending angle

4 Roman Pots of TOTEM

- 2 trackers per RP, at distance of 2 cm
- 2 Velo tiles per station, horizontal
- y position: distance dependent
- First tracking station: at 68 cm
- Lever arm: from 0.4 m to 1 m

Beam pipe: Al
elliptical shape, $2.1 \mathrm{~cm} \times 2.9 \mathrm{~cm}$
\rightarrow enlarged inside/after the magnet to $2.5 \times 5 \mathrm{~cm}$
Magnet MCBW (1.1 T, 1.7m): iron box
Bore: $5.2 \times 14 \mathrm{~cm}$

- constant field inside bore

Tracker occupancy

thanks to Sara Cesare for latest plots

Minimum bias events: Flux of $10^{6} \mathrm{p} / \mathrm{s}$, on 2 cm W target

- Rate in Velo Superpixel (4×2 pixels)

$$
\text { Rate }=N_{\text {hits }} / \mathrm{cm}^{2} / \mathrm{s}
$$

Simulation parameters:

- Production cut $=0.7 \mathrm{~mm}$
- No tracking cuts
- Physics list: FTFP_BERT EM

After magnet: < $10 \mathrm{MHz} / \mathrm{cm}^{2}$

Rate of layer 0

Rate of layer 4

Before magnet: < $250 \mathrm{MHz} / \mathrm{cm}^{2}$
\Rightarrow within VeloPix/TimePix3 allowed maximum rate $\left(600 \mathrm{MHz} / \mathrm{cm}^{2}\right)$

Λ_{c} signal

Λ_{c} input spectrum:

- generated using Pythia and with channeling (Biryukov's book), thanks to Fernando and Sergio - imported in DDG4 as General Particle Source

Number of Velo tiles:

- 2 before magnet
- 2 or 4 after magnet (to cover forward region)

Detector acceptance

Goal: acceptance downstream the magnet using VELO tiles
\rightarrow to read out tiles vertically inside Roman Pots: $\mathbf{2}$ horizontal Velo tiles

Front-end hybrid

As a function of Lever arm

Beam pipe inside magnet reduces the acceptance \rightarrow interactions of particles with beam pipe

Detector acceptance

Goal: acceptance downstream the magnet using VELO tiles
\rightarrow to read out tiles vertically inside Roman Pots: $\mathbf{2}$ horizontal Velo tiles

Front-end hybrid

As a function of Lever arm

\Rightarrow Enlarge the beam pipe to $2.5 \times 5 \mathrm{~cm}$ inside and after magnet

Detector acceptance

Goal: acceptance downstream the magnet using VELO tiles
\rightarrow to read out tiles vertically inside Roman Pots: $\mathbf{2}$ horizontal Velo tiles

Front-end hybrid

As a function of Lever arm

\Rightarrow Enlarge the beam pipe to $2.5 \times 5 \mathrm{~cm}$ inside and after magnet

Modifying RP geometry?

Low acceptance due to interactions with beampipe and RP tube after magnet:

- RP tube radius: 4cm (nominal).
- Enlarge it to 5 cm or 6 cm ?
- Beampipe radius
- inside magnet: $\mathbf{r = 5} \mathbf{c m}$
- after magnet: $\mathbf{r = 5 - 6} \mathbf{c m}$

$\begin{aligned} & 1 \text { Nominal: } r_{R P \text { tube }}=4 \mathrm{~cm} ; r_{B P \text { after }} \\ & \text { magnet } \end{aligned}$	53\%
2: $\mathrm{r}_{\mathrm{RP} \text { tube }}=4 \mathrm{~cm} ; \mathrm{r}_{\mathrm{BP} \text { after magnet }}=6 \mathrm{~cm}$	56\%
3: $\mathrm{r}_{\mathrm{RP} \text { tube }}=5 \mathrm{~cm} ; \mathrm{r}_{\mathrm{BP} \text { after magnet }}=5 \mathrm{~cm}$	71\%
3: $r_{\text {RP tube }}=5 \mathrm{~cm} ; \mathrm{r}_{\mathrm{BP} \text { after magnet }}=6 \mathrm{~cm}$	72\%

Tracker areas: 2 Velo tiles before magnet/3 Velo tiles after magnet to cover forward region

Open questions: is it feasible to enlarge the RP support?

Tracker optimization: layout 2

Layout 2: Hamburg Beam pipe

Usage of Hamburg beam pipe after magnet:

- Minimum y position: $y=0$ - Main beam is at -6.7 mm
- Trackers to cover forward region: \rightarrow for photoproduction studies
- Exit window of 80°

Trackers

Acceptance with 4 Velo tiles, in air: $\mathbf{7 2 \%} \Rightarrow$ Gain in acceptance: from 50% to 70%

Next:

- Need to perform optics function simulations to verify feasibility and positions

Dedicated magnet

Optimization of design

Dedicated magnet: $\mathbf{B = 4 T m}$

Tracker geometry: Hamburg beam pipe, lever-arm L=1m
\Rightarrow Optimization of length and bore diameter

- Bore $>6 \mathrm{~cm}$, since beam pipe radius cannot be reduced below 3 cm

$$
\begin{aligned}
& \Rightarrow \text { Acceptance of } 90 \% \text { for: } \\
& \text { 1. } B=4 T \text {, length }=1 \mathrm{~m} \text {, bore }=8 \mathrm{~cm} \\
& \text { 2. } B>4 T \text { and length }<1 \mathrm{~m} \text {, bore }=6 \mathrm{~cm} \\
& \Rightarrow \text { increase from } \sim 70 \% \text { to } 90 \% \text { of acceptance } \\
& \text { with Hamburg beampipe configuration } \\
& \Rightarrow \text { Factor of } 2 \text { improvement in invariant mass } \\
& \text { resolution }
\end{aligned}
$$

Possible solution for Phase II

RICH detector

RICH detector: occupancy

RICH filled with $\mathrm{He}, 5 \mathrm{~m}$ long

- \quad N photo-electrons $=12$
- SiPM:
- submm pixel size \rightarrow R\&D for RICH LHCbU2: $1 \mathrm{~mm}^{2}$
- coverage: 11 cm of diameter, at $\mathrm{y}>8 \mathrm{~cm}$

1. Occupancy from mb interactions: few tracks per event (<10) impinge on SiPM

Rate of layer 8

2. no background from unchanneled Lc (prob $<0.02 \%$)
3. Since it is very close to the beam, how many charged particles from the main/deflected beam impinge on the SiPM?
\rightarrow We would need beam dynamics simulations: $z=6 \mathrm{~m}$ from target, $\mathrm{y}>8 \mathrm{~cm}$

J/ ψ photoproduction

Inclusive Vector Meson photoproduction

Motivation is to perform feasibility studies for:

- VM photoproduction cross-section at threshold
- search for pentaquarks in prompt production
\Rightarrow improve upon recent GlueX results (J / Ψ yield= 2270) [Phys. Rev. C 108, 025201]

Process characteristics:

- very forward production
- exclusive process: only J / ψ and p
- high cross-section due to high target Z
- high luminosity due to target Z

Our experiment at IR3

\Rightarrow covers a pseudorapidity range from 5 to 8
\Rightarrow hermetic detector
$\Rightarrow \sim 10 \mathrm{nb}$, to be determined with simulations
\Rightarrow about $10^{29} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$

J/ ψ photoproduction

1. Cross-section estimates for pW and PbW at 7 TeV beam energy
2. Detector optimization
a. Resolutions on angular and momentum quantities for reconstruction of $m(J / \Psi p)$
b. Muon optimization
c. Trackers
3. Acceptance
4. Expected yields

Cross-sections

Cross-section estimate with STARLight MC link

1. pW interactions. Beam energy $=7 \mathrm{TeV}$
2. PbW interactions. Beam energy $=7 \mathrm{TeV} \times \mathrm{Z}$
3. $\mathrm{pW}: \mathbf{\sigma}=\mathbf{4 2} \mathbf{~ n b}, \mathrm{y}$ in range $3<\mathrm{y}<8$
with $4.2<\mathrm{W}_{\mathrm{gp}}<30 \mathrm{GeV}$

\Rightarrow Dominant process is incoherent photon-p interaction, with photon emitted by target (proportional to Z)
4. $\mathrm{PbW}: \sigma=1.89 \mathrm{mub}, \mathrm{y}$ in range $2<\mathrm{y}<6.5$

Cross-sections

Cross-section estimate with STARLight MC link

1. pW interactions. Beam energy $=7 \mathrm{TeV}$
2. PbW interactions. Beam energy $=7 \mathrm{TeV} \times \mathrm{Z}$

Comparison with GlueX: cross-section in range $4.2<\mathrm{W}<4.8 \mathrm{GeV}$

1. $\mathrm{pW}: \boldsymbol{\sigma}=\mathbf{0 . 5} \mathbf{n b}$

2. PbW: $\sigma=36 \mathrm{nb}, \mathrm{y}$ in range $2<\mathrm{y}<6.5$

Photoproduction kinematics

Invariant mass resolution depends on the angle between the Jpsi and the scattered proton

$$
m^{2}(J / \psi p)=m_{J / \psi}^{2}+m_{p}^{2}+2\left(E_{p} E_{J / \psi}-2\left|p_{p}\right|\left|p_{J / \psi}\right| \cos \left(\theta_{J / \psi p}\right)\right)
$$

Conservation of 4-momentum, neglecting E_{γ} :

$$
p_{p, f i n}=p_{p, i n}-p_{J / \psi}
$$

\Rightarrow the invariant mass depends on $\mathrm{p}_{\mathrm{J} / \psi^{\prime}}$ the deflection angle of proton and $\cos \left(\theta_{J / \psi p}\right)$

What is the resolution on these quantities?

Resolutions

Angles:			
$-\quad \theta_{\mathrm{p}}<250 \mu \mathrm{rad}$			
$-\quad$	$\theta_{J / \psi p}<2.5 \mathrm{mrad}$	$\quad \Rightarrow \quad$	Resolution
:---			

Momenta:
$-<\mathrm{p}_{\mathrm{J} / \mathrm{psi}}>\sim 500 \mathrm{GeV}$

\Rightarrow Trackers + Muon stations

$$
=1.7 \% \sigma_{s}=10 \mu m, D=1 m
$$

Resolutions

Angles:

- $\theta_{\mathrm{p}}<250 \mu \mathrm{rad}$

$$
-\theta_{J / \psi p}<2.5 \mathrm{mrad}
$$

$$
\begin{array}{ll}
\Rightarrow \quad & \sigma_{\theta} \sim 10 \mu \mathrm{rad} \\
& \sigma<10 \mu \mathrm{rad} \cdot D(=2 \mathrm{~m})=20 \mu \mathrm{~m}
\end{array}
$$

Momenta:

- $<\mathrm{p}_{\mathrm{J} / \mathrm{psi}}>\sim 500 \mathrm{GeV}$

$$
\Rightarrow \quad \sigma_{p} / p=\frac{2 p}{0.3 B L D} \sigma_{s}
$$

Detector

\Rightarrow Pixel stations before magnet:
$\Rightarrow \quad-\quad$ Hit reso:

$$
\sigma=55 \mu m / \sqrt{12}=15 \mu m
$$

- Multiple scattering $<5 \mu \mathrm{~m}$
\Rightarrow Trackers + Muon stations

$$
=1.7 \% \sigma_{s}=10 \mu m, D=1 \mathrm{~m}
$$

Resolution on invariant mass: $\quad m^{2}(J / \psi p)=m_{J / \psi}^{2}+m_{p}^{2}+2\left(E_{p} E_{J / \psi}-2\left|p_{p}\right|\left|p_{J / \psi}\right| \cos \left(\theta_{J / \psi p}\right)\right)$

Dominant term:

$$
\Delta \cos \theta_{J / \psi p}=\frac{1}{2 m} p_{J / \psi} p_{p} \sin \theta_{J / \psi p} \sigma_{\theta_{J / \psi p}} \sim 15 \mathrm{MeV}
$$

\Rightarrow To be checked with full reconstruction

Muon detector

Technologies:

- Si strip detector: UT sensor of $10 \times 10 \mathrm{~cm}^{2}$
- pitch $=180 \mu \mathrm{~m} \rightarrow \sigma=180 /$ sqrt(12) $=52 \mu \mathrm{~m}$
- MWPC: Gas mixture: Ar:CF4:CO2 [0.6:0.1:0.3], $5 \mathrm{~mm} \quad \Rightarrow$ angular reso of 1 mrad
- \quad pad $=20 \times 25 \mathrm{~mm}^{2}$
- chamber $=48 \times 20 \mathrm{~cm}^{2} \Rightarrow 24 \times 8$ pads

Interleaved with iron filters, 90 cm thick (to be optimized)

Possible design solutions:

1. First station of Si strip with area of $40 \times 20 \mathrm{~cm}^{2}+3$ stations of MWPC
2. 4 stations of Si , with reduced area (about $20 \times 20 \mathrm{~cm}^{2}, 4 / 5$ UT stations per layer)
3. 4 stations of MWPC

Muon occupancy

Silicon strip detectors as UT pitch: 200 mum sensor: $10 \times 10 \mathrm{~cm}^{2}$

Occupancy of layer 8

Maximum rate below limits:

- Flux $=10^{6} \mathrm{p} / \mathrm{s} \Rightarrow 36 \mathrm{kHz}$

Muon Chamber MWPC
pad $=20 \times 25 \mathrm{~mm}^{2}$
chamber $=48 \times 20 \mathrm{~cm}^{2} \Rightarrow 24 \times 8$ pads
\Rightarrow Maximum rate $<1-2 \mathrm{MHz}$
First station
Rate of layer 8

Second station

Rate of layer 9

\Rightarrow It could be usea trom secona station on with flux $10^{6} \mathrm{p} / \mathrm{s}$
\Rightarrow If we want to go to $10^{7} \mathrm{p} / \mathrm{s}$, we need to build full Si sensors or optimize the filter length

Veto exclusive events

Tag events which contain only 3 tracks: 1 proton and 2 muons
\Rightarrow Necessary to build an hermetic detector:

- Tracking stations below the beam pipe to enlarge acceptance in the forward region?
- Scintillator downstream at a distance of 100 m , such as Hershel

Inelastic interactions: initial proton can interact with target and crystal after being produced
\Rightarrow probability of having inelastic interaction with W and Si

$$
\begin{aligned}
& P_{\text {inel }}=\left(1-e^{-z_{\text {target }} / \lambda_{W}}\right)+\left(1-e^{-z_{C r y} / \lambda_{S i}}\right)=0.32 \\
& 1-P_{\text {inel }}=0.68
\end{aligned}
$$

\Rightarrow this factor needs to be multiplied by the acceptance efficiency
Possible solution to overcome this problem:

- dedicated run with thinner W target and no crystal

Simulations

Events: $10000 \mathrm{~J} / \Psi$ events in DD4hep

Stations geometry:

- Position: first station at $\mathrm{z}=15 \mathrm{~m}$
- Outside beam pipe:
- 2 beampipes at about 20 cm
- radius reduced to 2.5 cm

Pseudorapidity coverage:

Very forward acceptance: $4.5<y<7$

Acceptance

Scenario 1: 1st plane of Si strip ($40 \times 20 \mathrm{~cm}^{2}$) + MWPC ($1 \mathrm{~m}^{2}$)

- Position: first station at $\mathrm{z}=12-20 \mathrm{~m}$

Acceptance $=$ number of J / ψ reconstructed using tracker stations before magnet and muon stations (at least 6 hits out of 8)

\rightarrow Reconstruction with tracker downstream magnet: acceptance drops to $\sim 1 \%$

- Enlarge active area and/or place trackers below main beam
\rightarrow To consider the multiplicative factor of 68% due to inelastic interactions

Expected yield

Luminosity:

$$
\begin{aligned}
\mathcal{L}=\theta_{\text {target }} \cdot \Phi & =1.26 \cdot 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
\theta_{\text {target }} & =\frac{N_{A} \rho l}{M} *
\end{aligned}
$$

Expected data-taking time:

- proton run (/year): $6.85 \times 10^{6} \mathrm{~s}$
- Pb run (~ 1 week): $6 \times 10^{5} \mathrm{~s}$

Integrated L:

$$
\begin{aligned}
& \int \mathcal{L}=0.89 p b^{-1} \\
& \int \mathcal{L}=0.076 p b^{-1}
\end{aligned}
$$

Estimated yield	σ [nb]	Flux	Int L [pb ${ }^{-1}$]	ε	Yield $\mathbf{x} \boldsymbol{\varepsilon}$
$\mathrm{pW}, \mathrm{J} / \Psi$	42	$10^{6} \mathrm{p} / \mathrm{s}$	0.89	0.136	5'000/year
PbW, J/ Ψ	1890	$10^{6} \mathrm{p} / \mathrm{s}$	0.073	0.075	10'350/week
$\mathrm{pW}, \mathrm{J} / \Psi$ W<4.8GeV	0.5	$10^{7} \mathrm{p} / \mathrm{s}$	8.9	0.136	1700/year
PbW, J/ ψ W<4.8GeV	72	$10^{6} \mathrm{p} / \mathrm{s}$	0.073	0.075	400/week

Promising yields:

- sum different data taking runs to collect high yields
- Pentaquark search with $10^{7} \mathrm{p} / \mathrm{s}$

Conclusions

Optimization of detector design:

- Trackers: Velo pixel technology is suitable for PoP and future experiment
- Acceptance:
- Best configuration: usage of hamburg beam pipe \Rightarrow acceptance of 70\%
- For future: with a dedicated magnet we could reach 90%

Photoproduction:

- Extending the physics case to cover forward production can enrich our project
- Requirements:
- place trackers in front of the beam
- build muon stations
- Yield estimates for P_{c} yield are promising compared to other experiments and good invariant mass resolution
- Next: finalize reconstruction of J / Ψ and p

Thank you for the attention!

Backup slides

Code repositories

IR3Detector repository: link

- Geometry implementation
- xml files
- factories for subdetectors
- Simulation based on DDG4
- python file
\Rightarrow developer: myself, implementation and testing
| IR3Detector ${ }^{1 /}$
Project ID: 134709
- 201 Commits $\quad \mathcal{O} 16$ Branches $\bigcirc 2$ tags $\quad 329.9$ MB Project Storage

Simulation for IR3 fixed target detector based on the DD4hep framework
(1) Merge branch 'geo_RomanPots' into 'main' ...

Elisabetta Spadaro Norella authored 12 hours ago

(${ }^{9}$ Configure Integrations

IR3_ana_tool repository: link

- Event model (PODIO)
- Modules for data analysis
- Occupancy
- Reconstruction
- Digitization
\Rightarrow developers: Han,
Tianyu from UCAS and
Jascha from Bonn

Exit window geometry

Preliminary: Charm hadron yield

Decays: $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}, \mathrm{D}_{\mathrm{s}}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}, \Lambda_{\mathrm{c}}^{+} \rightarrow \mathrm{pK}^{-} \pi^{+}$
Flux on target $10^{6} \mathrm{p} / \mathrm{s}$, crystal length 7 cm , target thickness 2 cm , MCBW magnet with $\mathrm{RB}=2.5 \mathrm{~cm}$
Best configuration: Ge crystal, 5 mrad
D^{+}most abundant:

- thousands of events with flux of 10^{6} p / s (or 10000 with $10^{7} \mathrm{p} / \mathrm{s}$) in few days
D_{s} and Λ_{c}^{+}: resolvable with reso $<50 \mathrm{MeV}$
- thousand of events in ~ 2 months

We can do it!

- First measurement of EDM of $\Lambda_{c}{ }^{+}$

Si crystal
5 mrad bending

	D^{+}	D_{s}^{+}	Λ_{c}^{+}
1 day	109	16	8
1 month	3275	479	248

7 mrad bending

	D^{+}	D_{s}^{+}	Λ_{c}^{+}
1 day	1.6	0.2	0.1
1 month	48	7	4

Ge crystal
5 mrad bending

	D^{+}	D_{s}^{+}	Λ_{c}^{+}
1 day	616	94	21
1 month	18481	2807	645

7 mrad bending

	D^{+}	D_{s}^{+}	Λ_{c}^{+}
1 day	78	11	4
1 month	2334	342	114

- study of the very forward region

$\mathrm{J} / \psi \& \psi(2 \mathrm{~S})$ cross-section measurement

$\mathrm{J} / \Psi / \Psi(2 \mathrm{~S})$ cross-section measurement in range complementary to GlueX, HERA \& SLAC

Luminosity:

$$
\begin{aligned}
& \mathcal{L}=\theta_{\text {target }} \cdot \Phi \quad \theta_{\text {target }}=\frac{N_{A} \rho l}{M} \\
& \rho=19.3 \mathrm{~g} / \mathrm{cm}^{3} \\
& N_{A}=6.02 \cdot 10^{23} \\
& l=2 \mathrm{~cm} \\
& M=184 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Expected yield:

- $\quad F=10^{6} \mathrm{p} / \mathrm{s}, \int L=0.89 \mathrm{pb}^{-1}$ per year

	σ [nb]	Yield/year
$\mathbf{J} / \boldsymbol{\Psi}$	42	$37 \prime^{\prime} 000$
$\boldsymbol{\Psi (2 S})$	0.76	670

Cross-sections

Cross-section estimates with STARLight MC link

1. pW interactions. Beam energy $=7 \mathrm{TeV}$
2. PbW interactions. Beam energy $=7 \mathrm{TeV} \times \mathrm{Z}$
3. $\mathrm{pW}: \mathbf{\sigma}=\mathbf{4 2} \mathbf{~ n b}, \mathrm{y}$ in range $3<\mathrm{y}<8$ Center-of-mass energy: $4.2<\mathrm{W}<30 \mathrm{GeV}$

\Rightarrow Dominant process is incoherent photon-p interaction, with photon emitted by target
4. $\mathrm{PbW}: \sigma=1.89 \mathrm{mub}, \mathrm{y}$ in range $2<\mathrm{y}<6.5$

