Reconstruction and Background Discrimination

Jascha Grabowski

University of Bonn

23-12-12

Forward Spectrometer Setup

- channeled Λ⁺_c flight distance
 𝒪(3 cm)
- ⇒ Highly boosted Λ_c^+ daughter tracks from the crystal within only $\mathcal{O}(10 \, \mathrm{cm}^2)$ tracker area at 4.4 m distance
- 2 pixel trackers per Roman pot with 55 µm pitch
- Misidentified backgrounds from *e.g.* $D_s^+ \rightarrow K^+ K^- \pi^+$ mesons \rightarrow need good mass resolution

currently studied geometry

- to go from hits in the detector to tracks to Λ⁺_c candidates, we need
 - 1. Pattern Recognition
 - 2. Track Reconstruction
 - 3. Particle Identification
 - 4. Vertexing

Seeding

- most signal tracks originate close to z-axis \Rightarrow tracks have constant azimuthal angle ϕ outside of magnetic field
- sort track hits in φ, create a seed from a hit in layer 1 and a hit in layer 2, if they have similar φ
- extrapolate seed to layer 3 and add hits, if they lie within *x* − *y* window
- same for layer 4 with smaller window
- do the same in tracker behind magnet, but with looser φ-window (because tracks were bent in the magnetic field)

Seeding

- extrapolate downstream in (unbent)
 x-direction
- use Kalman Fitter to evaluate track quality and determine momenta
- test, if tracks form vertex
- additional hits from underlying event make track-finding more interesting

Track Angular and Momentum Resolution

- track momenta between 100 and 2000 GeV
- track θ within 1 mrad of Λ_c^+ flight direction
- $\frac{\sigma(p_z)}{p_z} \approx 3\%^a$ for daughter tracks from channeled Λ_c^+ spectrum
- track $\Delta \theta \approx 16 \mu rad \ ^{b}$

^a5 % for 0.4 m lever arm ^b29 μ rad for 0.4 m lever arm

\varLambda_c^+ Angular and Momentum Resolution

- $\Delta\theta(\Lambda_c^+) \approx 11 \mu rad$
- $\frac{\sigma(p_z)}{p_z}((\Lambda_c^+)) \approx 2.4\%$ (5.8% for 0.4 m lever arm)
- Λ_c^+ vertex resolution 80 μ m/140 μ m/2 cm in x/y/z

Particle Identification in $\Lambda_c^+ \rightarrow p K^- \pi^+$

track with **negative** charge gets assigned Kaon hypothesis

- Without RICH (see Roger's talk) need kinematics to associate track with PID: High mass daughter gets higher momentum on average''
- \Rightarrow assign proton hypothesis to higher momentum track ($\varepsilon \approx 80\%$)
- Different detector designs: tradeoff between acceptance (constrained by beampipe) and resolution (lever arm)

Jascha Grahowski

Track Reconstruction IR3

Why do we need a good mass resolution?

separation from misidientified background:

Particle Identification with RICH

Opposite charge track gets Kaon hypothesis

- RICH proposal by Roger Forty: 3σ separation between pion and proton from 100 to 1200 GeV
- can just take the track with higher PIDppi value to distinguish proton from pion candidates (gain 20% efficiency wrt. kinematic association)
- can reject 80 % of misid background with a signal efficiency $\epsilon_{\Lambda_c^+} = 94$ %

Why do we need a good angular resolution?

combinatoric background from hits from underlying event

- tracks including hits from several genuine particles (clones)
- genuine tracks from spray of particles out of p–W collision combined with Λ⁺_c daughters

Mitigation Options Clone Tracks

• Calculate angle between all reconstructed tracks – if below threshold, only keep the ones with best track fit quality $(\sigma(\theta_{\text{track}} \approx 16\mu\text{rad}))$

- study setup with beamwindow downstream of magnet: would benefit acceptance and resolution
- can additional layers inside Roman pots help with pattern recognition?
- What is performance for *J*/ψ adding muon stations

Backup

	200	22	1 20	bout	0 0 1
	131		ч		581
-	abe		- · · ·		2.41

Baryon Dipole Moments

Electric dipole moments suppressed in SM. Any significant observation would be sign for NP

- strong bounds for light baryons, dominated by neutron EDM measurement $(d_n < 10^{-26} e \text{ cm})$
- what if new physics couples stronger to heavy quarks (*b*-anomalies?): expect better sensitivity to NP from heavy baryon EDMs, even if sensitivity for *d_B* much worse than for *d_n*

Magnetic dipole moments of baryons can directly test different approaches for QCD calculations (sum rules, lattice, ...)

• For Λ_c^+ : predictions range from $\mu = 0.15\mu_N$ to $\mu = 0.4\mu_N$ (link)

$$egin{aligned} \mathcal{H} &= -ec{\delta}\cdotec{\mathcal{E}} + ec{\mu}\cdotec{\mathcal{B}} \ \mathcal{T}(ec{\delta}) &= \mathbf{P}(ec{\delta}) = -1ec{\delta} \Rightarrow \mathcal{LP} \end{aligned}$$

Track Reconstruction IR3

Crystal Channeling

Measure dipole moments from precession of spin in magnetic field, but $c\tau_{A^+_z}\approx 5cm$ \Rightarrow

- \blacksquare Need strong magnetic fields $\gg 1\, T$ for significant precession
- strong electric fields in potential well between lattice planes in a crystal ⇒ effective B-field!
- $\Rightarrow \vec{E}^* \approx \gamma \vec{E}, \ \vec{B}^* \approx -\gamma \vec{\beta} \times \vec{E}$
- positively-charged particles can be **channeled**, if transverse energy is small Small incident angle w.r.t the crystal planes (few $\mu rad \Rightarrow$ low efficiency $\mathcal{O}(10^{-4})$)

Spin precession is then

$$ec{S} pprox \left(rac{d}{g-2}\left(\cos\Phi-1
ight),\cos\Phi,\sin\Phi
ight)$$

with $\Phi \approx \frac{g-2}{2} \gamma \frac{L}{\rho_0}$ (L: crystal length, ρ_0 : bending angle link and EPJ C 77 (2017) 828

Double Crystal Channeling Setup

Need boosted source of polarized Λ_c^+ \Rightarrow fixed target at LHC

- use crystal to channel 6.5 TeV protons from LHC beam halo onto W target
- produced A⁺_c have significant polarisation and are very collimated
- channel Λ_c^+ with second crystal

Need detector to infer **spin direction S** from decay products: $pK^-\pi^+$

- use available correction magnet at IR3 as a spectrometer
- put tracking stations in front and behind the magnet

from Elisabetta's slides link

Jascha Grabowski

Reconstruction and Background Discrimination

- do a full simulation of the setup with realistic description of effects from material interactions and reconstruction
- can detector concept cope with
 - misidentified decays (mostly $D \rightarrow K^+ \pi^+ \pi^$ and $D_s^+ \rightarrow K^+ K^- \pi^-$)
 - combinatorial background
 - decays with missing particles
- simulate the full chain from particle production over detector response to event reconstruction

