Reconstruction and Background Discrimination

Jascha Grabowski
University of Bonn

23-12-12

Forward Spectrometer Setup

- channeled Λ_{c}^{+}flight distance $\mathcal{O}(3 \mathrm{~cm})$
\Rightarrow Highly boosted Λ_{c}^{+}daughter tracks from the crystal within only $\mathcal{O}\left(10 \mathrm{~cm}^{2}\right)$ tracker area at 4.4 m distance
- 2 pixel trackers per Roman pot with $55 \mu \mathrm{~m}$ pitch
- Misidentified backgrounds from e.g. $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}$ mesons \rightarrow need good mass resolution
currently studied geometry

- to go from hits in the detector to tracks to Λ_{c}^{+} candidates, we need

1. Pattern Recognition
2. Track Reconstruction
3. Particle Identification
4. Vertexing

- most signal tracks originate close to z-axis \Rightarrow tracks have constant azimuthal angle ϕ outside of magnetic field
- sort track hits in ϕ, create a seed from a hit in layer 1 and a hit in layer 2, if they have similar ϕ

Seeding

- extrapolate downstream in (unbent) x-direction
- use Kalman Fitter to evaluate track quality and determine momenta
- test, if tracks form vertex
- additional hits from underlying event make track-finding more interesting

$$
\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}
$$

Track Angular and Momentum Resolution

- track momenta between 100 and 2000 GeV
- track θ within 1 mrad of Λ_{c}^{+} flight direction
- $\frac{\sigma\left(p_{z}\right)}{p_{z}} \approx 3 \%^{a}$ for daughter tracks from channeled Λ_{c}^{+} spectrum
- track $\Delta \theta \approx 16 \mu \mathrm{rad}{ }^{b}$

$$
{ }^{2} 5 \% \text { for } 0.4 \mathrm{~m} \text { lever arm }
$$

${ }^{b} 29 \mu \mathrm{rad}$ for 0.4 m lever arm

Λ_{c}^{+}Angular and Momentum Resolution

- $\Delta \theta\left(\Lambda_{c}^{+}\right) \approx 11 \mu \mathrm{rad}$
- $\frac{\sigma\left(p_{z}\right)}{p_{z}}\left(\left(\Lambda_{c}^{+}\right)\right) \approx 2.4 \%$ (5.8\%
for 0.4 m lever arm)
- Λ_{c}^{+}vertex resolution $80 \mu \mathrm{~m} / 140 \mu \mathrm{~m} / 2 \mathrm{~cm}$ in $\mathrm{x} / \mathrm{y} / \mathrm{z}$

vertex $\Delta z\left(\left(\Lambda_{c}^{+}\right)\right)[c m]$

Particle Identification in $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$

track with negative charge gets assigned Kaon hypothesis

■ Without RICH (see Roger's talk) need kinematics to associate track with PID: High mass daughter gets higher momentum on average"
\Rightarrow assign proton hypothesis to higher momentum track ($\varepsilon \approx 80 \%$)
■ Different detector designs: tradeoff between acceptance (constrained by beampipe) and resolution (lever arm)

Why do we need a good mass resolution?

separation from misidientified background:
■ $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$one π^{+}
misidentified as p

- $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}$with K^{+} misidentified as p
- similar cross section, and channeling probabilities,

KKpi hypo
 and life times as Λ_{c}^{+}

- Use of mass veto possible, but not very efficient: $\epsilon_{\text {sig }} \approx 60 \%, \epsilon_{D s} \approx 30 \%^{a}$

[^0]Gaussan nefrumindas.

Gaussian pdf with data
pKpi hypo
$m\left(p K^{-} \pi^{+}\right)[\mathrm{GeV}]$

Particle Identification with RICH

Opposite charge track gets Kaon hypothesis

- RICH proposal by Roger Forty: 3σ separation between pion and proton from 100 to 1200 GeV
- can just take the track with higher PIDppi value to distinguish proton from pion candidates (gain 20% efficiency wrt. kinematic association)
- can reject $\mathbf{8 0} \%$ of misid background with a signal efficiency $\epsilon_{\Lambda_{c}^{+}}=\mathbf{9 4} \%$

Why do we need a good angular resolution?

combinatoric background from hits from underlying event

■ tracks including hits from several genuine particles (clones)

- genuine tracks from spray of particles out of $p-W$ collision combined with Λ_{c}^{+} daughters

Mitigation Options Clone Tracks

- Calculate angle between all reconstructed tracks - if below threshold, only keep the ones with best track fit quality
$\left(\sigma\left(\theta_{\text {track }} \approx 16 \mu \mathrm{rad}\right)\right)$

$m\left(p K^{-} \pi^{+}\right)[\mathrm{GeV}]$
Mitigation Options Genuine extra particles
- Cut on Λ_{c}^{+}flight direction (channeled Λ_{c}^{+}have $\theta=7.00 \pm 0.03 \mathrm{mrad})\left(\sigma\left(\theta_{\Lambda_{c}^{+}}\right) \approx 11 \mu \mathrm{rad}\right)$
- Vertexing: $\sigma_{z} \approx 2 \mathrm{~cm} \sigma_{x y} \approx 140 \mu m$ (typical Λ_{c}^{+} flight distance $\approx 2 \mathrm{~cm}$)

Next Steps

■ study setup with beamwindow downstream of magnet: would benefit acceptance and resolution

- can additional layers inside Roman pots help with pattern recognition?
- What is performance for J / ψ adding muon stations

Backup

Baryon Dipole Moments

Electric dipole moments suppressed in SM. Any significant observation would be sign for NP

■ strong bounds for light baryons, dominated by neutron EDM measurement

$$
\left(d_{n}<10^{-26} e \mathrm{~cm}\right)
$$

$$
\begin{array}{rlrl}
\vec{\delta} & =\int \vec{r} \rho(\vec{r}) d^{3} r \quad \vec{\mu}=\frac{1}{2} \int \vec{r} \times \vec{J}(\vec{r}) d^{3} r \\
& =d \mu_{N} \frac{\vec{S}}{2} & =g \mu_{N} \frac{\vec{S}}{2}
\end{array}
$$

- what if new physics couples stronger to heavy quarks (b-anomalies?): expect better sensitivity to NP from heavy baryon EDMs, even if sensitivity for d_{B} much

$$
\mathbf{T}(\vec{\delta})=\mathbf{P}(\vec{\delta})=-1 \vec{\delta} \Rightarrow \not \subset
$$ worse than for d_{n}

Magnetic dipole moments of baryons can directly test different approaches for QCD calculations (sum rules, lattice, ...)

- For Λ_{c}^{+}: predictions range from

$$
\mu=0.15 \mu_{N} \text { to } \mu=0.4 \mu_{N}(\text { link })
$$

$$
H=-\vec{\delta} \cdot \vec{E}+\vec{\mu} \cdot \vec{B}
$$

Crystal Channeling

Measure dipole moments from precession of spin in magnetic field, but $c \tau_{\Lambda_{c}^{+}} \approx 5 \mathrm{~cm} \Rightarrow$

- Need strong magnetic fields $\gg 1 T$ for significant precession
- strong electric fields in potential well between lattice planes in a crystal \Rightarrow effective B-field!
$\Rightarrow \vec{E}^{*} \approx \gamma \vec{E}, \vec{B}^{*} \approx-\gamma \vec{\beta} \times \vec{E}$
- positively-charged particles can be channeled, if transverse energy is small \Rightarrow Small incident angle w.r.t the crystal planes (few μ rad \Rightarrow low efficiency $\left.\mathcal{O}\left(10^{-4}\right)\right)$

Spin precession is then

$$
\vec{S} \approx\left(\frac{d}{g-2}(\cos \Phi-1), \cos \Phi, \sin \Phi\right)
$$

with $\Phi \approx \frac{g-2}{2} \gamma \frac{L}{\rho_{0}}$ (L: crystal length, ρ_{0} : bending angle link and EPJ C 77 (2017) 828

Double Crystal Channeling Setup

Need boosted source of polarized Λ_{c}^{+}
\Rightarrow fixed target at LHC

- use crystal to channel 6.5 TeV protons from LHC beam halo onto W target
- produced Λ_{c}^{+}have significant polarisation and are very collimated
- channel Λ_{c}^{+}with second crystal

Need detector to infer spin direction \mathbf{S} from decay products: $p K^{-} \pi^{+}$

■ use available correction magnet at IR3 as a spectrometer

■ put tracking stations in front and behind the magnet

[^1]
Reconstruction and Background Discrimination

- do a full simulation of the setup with realistic description of effects from material interactions and reconstruction
- can detector concept cope with
- misidentified decays (mostly $D \rightarrow K^{+} \pi^{+} \pi^{-}$ and $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{-}$)
- combinatorial background
- decays with missing particles
initial

current

[^0]: ${ }^{a}$ worse for shorter lever arms

[^1]: from Elisabetta's slides link

