Neutrino Cosmology in 2023

Miguel Escudero Abenza

miguel.escudero@cern.ch

IJCLab Orsay 05-12-2023

Neutrino Evolution

Neutrinos are always a relevant species in the Universe's evolution

Global Perspective

Global Perspective

In the next 5-6 years:

Motivation/Outline

Neutrino Cosmology is about to enter the ultrahigh precision regime

1) Understand with high accuracy $N_{\rm eff}$ in the Standard Model

M.E.A. <u>1812.05605</u> & <u>2001.04466</u> [JCAP]

with Cielo, Mangano & Pisanti 2306.05460 [PRD]

2) Understand the model dependence of the bounds on $\sum m_{\nu}$ from Cosmology

Particularly given the strong complementarity with laboratory experiments:

Planck:
$$\sum m_{\nu} < 0.12 \text{ eV}$$

 $\sum m_{\nu} \Big|_{\text{NO}} \ge 0.06 \text{ eV} \sum m_{\nu} \Big|_{\text{IO}} \ge 0.1 \text{ eV}$
KATRIN 2023: $\sum m_{\nu} < 2.4 \text{ eV}$
KATRIN 2027: $\sum m_{\nu} < 0.6 \text{ eV}$
Exciting $0\nu\beta\beta$ program

with Alvey & Sabti 2111.12726 [JCAP] with Schwetz & Terol-Calvo 2211.01729 [JHEP]

3) Understand to which degree can neutrinos have BSM interactions with Witte <u>1909.04044</u>, <u>2103.03249</u> & with Sandner <u>2305.01692</u> [EPJC] with Taule & Garny <u>2207.04062</u> [PRD]

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Outline

Set Up

Unlike neutrinos, I do like to interact 😃

Questions, Comments and Criticism are most welcome, at any time!!!!

Neutrino Decoupling

Cosmic Neutrino Background

• $N_{\rm eff}^{\rm SM} = 3.044(1)$

Mangano et al. hep-ph/0506164 de Salas & Pastor 1606.06986 Bennett, Buldgen, Drewes & Wong 1911.04504 Escudero Abenza 2001.04466

Akita & Yamaguchi 2005.07047 Froustey, Pitrou & Volpe 2008.01074 Gariazzo, de Salas, Pastor et al. 2012.02726 Hansen, Shalgar & Tamborra 2012.03948

Neutrino Cosmology in 2023

Why is Neff in the SM not 3?

Recently reviewed by Akita & Yamaguchi, 2210.10307, see also the nice review by Dolgov hep-ph/0202122

Relic Neutrino Decoupling $t \sim 0.1 \, \text{s}$ $T_{\nu} \sim 2 \, \text{MeV}$

- 1) Some $e^+e^- \rightarrow \bar{\nu}\nu$ heating because $T_{\nu}^{\text{dec}} \sim 4 \times m_e$
- **2)** Finite temperature corrections to $\delta m_{\gamma}^2(T)$ and $\delta m_e^2(T)$
- 3) Neutrino oscillations

Standard Model prediction as of 2022: $N_{\rm eff}^{\rm SM} = 3.0440(2)$

Akita & Yamaguchi 2005.07047 Froustey, Pitrou & Volpe 2008.01074 Bennett, Buldgen, de Salas, Drewes, Gariazzo, Pastor & Wong 2012.02726

 $\Delta N_{\rm eff} \simeq +0.03$

 $\Delta N_{\rm eff} \simeq +0.01$

 $\Delta N_{\rm eff} \simeq + 0.0007$

Finite temperature QED corrections to $e^+e^- \rightarrow \bar{\nu}\nu$ processes 4)

QED corrections are well known to be sizable (~5%) for $\nu e \rightarrow \nu e$ scatterings for solar neutrinos, see e.g. Bahcall, Kamionkowski & Sirlin [astro-ph/9502003] Estimate of this effect was made in Escudero Abenza 2001.04466 using an interpolation of the NLO rates from Esposito et al. [astro-ph/0301438]

Together with Gianpiero Mangano, Ofelia Pisanti and Mattia Cielo we have actually accurately accounted for the correction to the energy transfer rates which is $\sim -4\%$ at T = 1 MeV

At NLO:
$$\Delta N_{\rm eff} \simeq -0.0007$$

$$N_{\rm eff}^{\rm SM} = 3.0432(2) = 3.043$$

Cielo, Escudero, Mangano & Pisanti 2306.05460

Miguel Escudero (CERN)

Kolb et al. '82

Heckler '94

Dolgov et al. '97

Bennet et al. '21

Mangano et al. '05 de Salas & Pastor '16

The essence in 1 slide

1) Calculation performed following the real time formalism in thermal field theory

See Esposito, Mangano, Miele, Picard & Pisanti astro-ph/0301438 & astro-ph/0112384

2) Solve for the process of neutrino decoupling:

exact:
$$\frac{df_{\nu}}{dt} - Hp\frac{\partial f_{\nu}}{\partial p} = C[f_{\nu}]$$
approximate but
$$\frac{dT_{\nu}}{dt} = -HT_{\nu} + \frac{\frac{\delta\rho_{\nu_e}}{\delta t} + 2\frac{\delta\rho_{\nu_{\mu}}}{\delta t}}{3\frac{\partial\rho_{\nu}}{\partial T_{\nu}}} \quad \text{Escudero } \frac{1812.05605}{\& 2001.04466} \text{ [JCAP]}$$
3) Result at NLO:
$$\Delta N_{\text{eff}} \simeq -0.0007$$

$$N_{\text{eff}}^{\text{SM}} = 3.0432(2) = 3.043$$
Cielo, Escudero, Mangano & Pisanti 2306.05460

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Global Perspective

Big Bang Nucleosynthesis

Current measurements are consistent with the SM picture

This implies that neutrinos should have been present:

- 1) It is impossible to have successful BBN without neutrinos. $n \leftrightarrow p + e^- + \bar{\nu}_e$ They participate in $p \leftrightarrow n$ conversions up to $T \gtrsim 0.7 \text{ MeV}$ $n + \nu_e \leftrightarrow p + e^-$
- 2) Neutrinos contribute to the expansion rate $H \propto \sqrt{
 ho}$

By comparing predictions against observations, we know:

$$N_{\rm eff}^{\rm BBN} = 2.86 \pm 0.28$$

see e.g., Pisanti et al. 2011.11537 and Yeh et al. 2207.13133

Cosmic Microwave Background Why?

Ultra-relativistic neutrinos represent a large fraction of the energy density of the Universe, $H\propto \sqrt{\rho}$

Current constraints

BBN

$$N_{\rm eff}^{\rm BBN} = 2.86 \pm 0.28$$

Pisanti et al. 2011.11537 Yeh et al. 2207.13133

Planck+BAO

$$N_{\mathrm{eff}}^{\mathrm{CMB}} = 2.99 \pm 0.17$$
 Planck 20

Planck 2018, 1807.06209

- Standard Model prediction: $N_{\text{eff}}^{\text{SM}} = 3.043$
- Data is in excellent agreement with the Standard Model prediction
- This provides strong (albeit indirect) evidence for the Cosmic Neutrino Background

Implications:

- 1) Stringent constraint on many BSM scenarios
- 2) We can use cosmological data to test neutrino properties

Constraints on Neff

- Sterile Neutrino $m_N \sim {
 m eV}$ $\Delta N_{
 m eff} = 1$ (e.g. Gariazzo, de Salas & Pastor 1905.11290)
- **Goldstone Bosons** Weinberg 1305.1971
- Other sterile long-lived particles Axion, gravitino, axino, hidden sector particles ...

Stringent constraint on BSM physics

Constraints are relevant in many other BSM settings:

- $m_{\rm WIMP} > (4 10) \,\mathrm{MeV}$ **WIMPs**
- **GeV-Sterile Neutrinos** $\tau_N \lesssim 0.05 \,\mathrm{s}$
- $g \lesssim 10^{-10} \ m \lesssim 10 \,\mathrm{MeV}$ **Vector Bosons**
- Axions

PBHs

- $T_{\rm RH} > (2-5) \,{\rm MeV}$ Low Reheating
- Variations of GN

 $G_{\rm BBN}/G_0 = 0.98 \pm 0.03$

 $6 \times 10^8 \,\mathrm{g} < M_{\rm PBH} < 2 \times 10^{13} \,\mathrm{g}$

Sabti et. al. 1910.01649 Boehm et. al. 1303.6270

Sabti et. al. 2006.07387 Dolgov et. al. hep-ph/0008138

Escudero et. al. 1901.02010 Kamada & Yu 1504.00711

Raffelt et. al. 1011.3694 Blum et.al. 1401.6460

de Salas et. al. 1511.00672 Hasegawa et. al. 1908.10189

Alvey et. al. 1910.10730 Copi et.al. astro-ph/0311334

Carr et. al. 0912.5297 Keith et.al. 2006.03608

Check out a review on non-standard expansion histories:

2006.16182 Vaskonen et al. (Escudero & Poulin)

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Current constraints

BBN

$$N_{\rm eff}^{\rm BBN} = 2.86 \pm 0.28$$

Pisanti et al. 2011.11537 Yeh et al. 2207.13133

Planck+BAO

$$V_{\rm eff}^{\rm CMB} = 2.99 \pm 0.17$$
 Planck

Planck 2018, 1807.06209

- Standard Model prediction: $N_{\rm eff}^{\rm SM} = 3.043$
- Data is in excellent agreement with the Standard Model prediction
- This provides strong (albeit indirect) evidence for the Cosmic Neutrino Background

Implications:

1) Stringent constraint on many BSM scenarios

We can use cosmological data to test neutrino properties

Neutrino Properties

Figure from de Salas et al. 1806.11051

Mass differences and mixings measured with high precision

Are Neutrinos Dirac or Majorana Particles? 0v2β Experiments

What is the neutrino mass scale? i.e. Σm_{ν} ? i.e. m_{lightest} ?

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Cosmology

1) Massive neutrinos modify the expansion history

• 2) Massive neutrinos suppress the growth of structure

Taken from a talk by Steen Hannestad Link.

This happens because neutrinos travel very fast and therefore cannot fall in gravitational potentials. The effect of this smoothing is proportional to Ω_{ν}

Cosmic Microwave Background Anisotropies

Neutrinos of $m_{\nu} < 0.5 \text{ eV}$ become non-relativistic after recombination. That means that their effect on the anisotropies is somewhat small!

The most relevant impact is through the effect of gravitational lensing:

The larger the neutrino mass the less is the CMB light lensed!

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Cosmic Microwave Background Anisotropies

The effect of neutrino masses in the CMB:

Galaxy Surveys

Suppression from $\Omega_{
u} h^2$

Planck 2018 for **ACDM** (1807.06209)

$$\begin{split} &\sum m_{\nu} < 0.54 \, \mathrm{eV} \qquad \text{(95 \% CL, TT+lowE)} \\ &\sum m_{\nu} < 0.26 \, \mathrm{eV} \qquad \text{(95 \% CL, TTTEEE+lowE)} \\ &\sum m_{\nu} < 0.24 \, \mathrm{eV} \qquad \text{(95 \% CL, TTTEEE+lowE+lensing)} \\ &\sum m_{\nu} < 0.12 \, \mathrm{eV} \qquad \text{(95 \% CL, TTTEEE+lowE+lensing+BAO} \end{split}$$

To be compared to the KATRIN bound: $\sum m_{\nu} < 2.4 \,\mathrm{eV}$

Very robust bounds from linear Cosmology $\Delta T/T \sim 10^{-5}$

What about other non-linear cosmological data?

Importantly, all cosmological bounds are cosmological model dependent

What is the dependence upon the assumed Cosmological Model?

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Data beyond Planck and BAO within ACDM

$\sum m_{\nu} < 0.26 \mathrm{eV}$	Planck	Planck 1807.06209
$\sum m_{\nu} < 0.12 \mathrm{eV}$	Planck+BAO	Planck 1807.06209
$\sum m_{\nu} < 0.86 \mathrm{eV}$	BOSS P(k)	lvanov et al. 1909.05277
$\sum m_{\nu} < 0.16 \mathrm{eV}$	Planck+BOSS P(k)	lvanov et al. 1912.08208
$\sum m_{\nu} < 0.58 \mathrm{eV}$	Lyman- <i>α</i> +H₀prior	Palanque-Delabrouille et al. 1911.09073
$\sum m_{\nu} < 0.10 \mathrm{eV}$	Planck+Lyman- $lpha$	
$\overline{\sum} m_{\nu} < 0.08 \mathrm{eV}$	Planck+BAO+H₀	Choudhury & Hannestad 1907.12598
$\overline{\sum} m_{\nu} < 0.09 \mathrm{eV}$	Planck+BAO+SN+RSD	di Valentino, Gariazzo & Mena 2106.15267

- Planck is driving current cosmological constraints
- Non-linear or mildly non-linear data sets break degeneracies in the fit
- The larger H₀ is, the stronger the constraint on $\sum m_{\nu}$ is (However, this comes from combining two data sets in strong tension!)

Neutrino Cosmology in 2023

Cosmological Model Dependence

Planck+BAO and 3 degenerate neutrinos

 $\sum m_{\nu} < 0.12 \,\mathrm{eV}$ **Standard Case** $\Lambda CDM + m_{\nu}$ Planck 1807.06209 $\sum m_{\nu} < 0.25 \,\mathrm{eV}$ **Dark Energy dynamics** $CDM+m_v+\omega_a+\omega$ **Choudhury & Hannestad 19'** $\sum m_{\nu} < 0.15 \,\mathrm{eV}$ **Varying Curvature** $\Lambda CDM + m_{\nu} + \Omega_k$ **Choudhury & Hannestad 19'** $\sum m_{\nu} < 0.13 \,\mathrm{eV}$ Varying N_{eff} ΛCDM+m_v+N_{eff} Planck 1807.06209 $\sum m_{\nu} < 0.17 \,\mathrm{eV}$ Varying $N_{eff}+\omega+\alpha_s+m_v$ $CDM+m_v+N_{eff}+\omega+a_s+m_v$ di Valentino et al. 1908.01391

Constraints are robust upon standard modifications of ΛCDM

Cosmological Model Dependence Non-standard Neutrino Cosmologies:

Invisible Neutrino Decay

 $\nu_i \to \nu_j \phi$ $\sum m_{\nu} \lesssim 0.2 \,\mathrm{eV}$

Oldengott, Wong et al. 2203.09075 & 2011.01502 Escudero & Fairbairn 1907.05425

 $u_i \rightarrow \nu_4 \phi$

 $\sum m_{\nu} \lesssim 0.42 \,\mathrm{eV}$

Abellán, Poulin et al. 1909.05275, 2112.13862 Escudero, López-Pavón, Rius & Sandner 2007.04994

Time Dependent Neutrino Masses

Late phase transition

 $\sum m_{\nu} < 1.4 \,\mathrm{eV}$

Dvali & Funcke 1602.03191 Lorenz et al. 1811.01991 & 2102.13618

Ultralight scalar field screening

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Esteban & Salvadó 2101.05804 Wetterich et al. 1009.2461

Non-standard Neutrino Populations

 $T_{\nu} < T_{\nu}^{\rm SM} + {\rm DR}$

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Farzan & Hannestad 1510.02201 Escudero, Schwetz & Terol-Calvo 2211.01729

 $< p_{\nu} > > 3.15 T_{\nu}^{SM}$

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Oldengott et al. 1901.04352 Alvey, Escudero & Sabti 2111.12726

Bounds can be significantly relaxed in some extensions of ΛCDM. They require modifications to the neutrino sector.

But Why? and How?

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Orsay 05-11-23

The Cosmic Neutrino Background

see Alvey, M.E.A. & Sabti 2111.12726 and also Oldengott et al. 1901.04352 and Renk et al. 2009.03286

Neutrino Cosmology in 2023

The Picture

Farzan & Hannestad 1510.02201 Escudero, Schwetz & Terol-Calvo 2211.01729

Summary of main features

Escudero, Schwetz & Terol-Calvo 2211.01729

• Requirements:

- 1) Features a neutrino mass mechanism (type-I seesaw)
- 2) Have a large number of massless sterile states coupled to neutrinos

$$\sum m_{\nu} < 0.12 \,\text{eV} \left[1 + N_{\chi}/3 \right] \qquad N_{\chi} \sim 10 - 20$$

- 3) These states are nevertheless coupled enough so that they can thermalize in the early Universe between BBN and recombination
- 4) A new interacting boson at the keV scale

The essence of the models:

Add a U(1)_x symmetry with a scalar field and a singlet left-handed state S_{L}

$$\mathcal{L} = y \Phi \overline{N}_R S_L \qquad M_{\nu}|^{7 \times 7} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^t & M_R & y_{\alpha} v_{\Phi} \\ 0 & (y_{\alpha} v_{\Phi})^t & 0 \end{pmatrix}$$
Provided $y_{\alpha} v_{\Phi} \ll m_D$
• Seesaw mechanism at play $m_{\nu} \simeq m_D^2 / M_R$
• Right ν_4 properties: $m_{\chi} \simeq 0 \quad U_{\alpha 4} \sim \frac{y_{\alpha} v_{\Phi}}{m_D} \ll 1$

Trivial to generalize to the case of $N_{\chi} \sim 10-20$. Additional Z2 needed for Gauge case

Neutrino Cosmology in 2023

Complete UV models

Active-sterile mixing

 $\theta_{
u\chi}$

 v_{Φ}

Scale at which $U(1)_X$ is spontaneously broken

Parameters:

Parameter Space

Non-standard Neutrino Cosmologies:

Invisible Neutrino Decay

 $\sum_{i}^{\nu_{i}} \rightarrow \nu_{j} \phi$ $\sum_{\nu} m_{\nu} < 0.2 \,\mathrm{eV}$

Oldengott, Wong et al. 2203.09075 & 2011.01502 Escudero & Fairbairn 1907.05425 Archidiacono & Hannestad 1311.3873

 $\nu_i \rightarrow \nu_4 \phi$

at least: $\sum m_{
u} \lesssim 0.42 \, \mathrm{eV}$

Abellán, Poulin et al. 1909.05275, 2112.13862 Escudero, López-Pavón, Rius & Sandner 2007.04994

Time Dependent Neutrino Masses

Late phase transition

 $\sum m_{\nu} < 1.4 \,\mathrm{eV}$

Dvali & Funcke 1602.03191 Lorenz et al. 1811.01991 & 2102.13618

Ultralight scalar field screening

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Esteban & Salvadó 2101.05804 Wetterich et al. 1009.2461

Non-standard Neutrino Populations

 $T_{\nu} < T_{\nu}^{\rm SM}$

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Farzan & Hannestad 1510.02201 Escudero, Schwetz & Terol-Calvo 2211.01729

 $< p_{\nu} > > 3.15 T_{\nu}^{\text{SM}}$

 $\sum m_{\nu} < 3 \,\mathrm{eV}$

Oldengott et al. 1901.04352 Alvey, Escudero & Sabti 2111.12726

Take Away Messages:

- Cosmology can only constrain $\Omega_{\nu}(z)$ and not directly m_{ν}
- Of course, in ACDM there is a direct link between $\Omega_{\nu}(z)$ and m_{ν}
- All these models reduce $\Omega_\nu(z)$ with respect to the one in $\Lambda {\rm CDM}$ and are in excellent agreement with all known cosmological data
- Importantly, they entail non-standard neutrino properties

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Neutrino Interactions

Neutrinos represent a large component of the energy density of the Universe

- Neutrinos have very special cosmological perturbations
 - 1) They are ultrarelativistic until $z \sim 200 \, m_{\nu}/0.1 \, \mathrm{eV}$

2) In the SM: since $t_U \sim 0.1 \, \mathrm{s} \, (T \sim 2 \, \mathrm{MeV})$, they are free streaming i.e. do not interact with anything

These together actually mean that CMB observations can probe potential neutrino interactions!

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Why?

First discussed by Bashinsky & Seljak in [astro-ph/0310198] and applied by Chacko, Hall, Okui & Oliver [hep-ph/0312267]

The key is in Einstein's equations

Neutrino anis strepic stress Metric

 \mathcal{J}_{ν} \longrightarrow

 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$ Background expansion: Neff $\delta G_{\mu\nu} = 8\pi G \delta T_{\mu\nu}$ Perturbations: can tell about interactions

 $\delta g_{\mu
u}$ ———

Free Streaming Neutrinos $\sigma_{\nu} \neq 0$

Interacting Neutrinos $\sigma_{\nu} \rightarrow 0$

CMB spectra

 $\rightarrow \Delta T_{\nu}$

Effect of Neutrino Free-streaming in the CMB

Miguel Escudero (CERN)

The Neutrino Freestreaming window

Together with Petter Taule and Mathias Garny in 2207.04062 we have recently stablished the presence of a neutrino free streaming window.

We have demonstrated in a model independent way that neutrinos cannot interact efficiently between themselves or other light particles in the range:

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Models

Neutrino Decays ν_j

Hannestad & Raffelt [hep-ph/0509278] Basboll, Bjaelde, Hannestad & Raffelt [0806.1735] Escudero & Fairbairn [1907.05425] Chacko, Dev, Du, V. Poulin and Y. Tsai [1909.05275] Barenboim, Chen, Hannestad, Oldengott, Tram & Wong [2011.01502] Abellán, Chacko, Dev, Du, Poulin & Tsai [2112.13862] Chen, Oldengott, Pierobon & Wong [2203.09075]

Neutrino Scatterings

Cyr-Racine & Sigurdson [1306.1536] Lancaster, Cyr-Racine, Knox & Pan [1704.06657] Oldengott, Tram, Rampf & Wong [1706.02123] Kreisch, Cyr-Racine & Doré [1902.00534] Das & Ghosh [2011.12315] Choudhury, Hannestad & Tram [2012.07519] Brinckmann, Chang & LoVerde [2012.11830]

Neutrino Annihilations

Beacom, Bell & Dodelson [astro-ph/0404585] Hannestad [astro-ph/0411475] Archidiacono & Hannestad [1311.3873] Forastieri, Lattanzi & Natoli [1904.07810]

eV-scale neutrinophilic bosons

Chacko, Hall, Okui & Oliver [hep-ph/0312267] Escudero & Witte [1909.04044] Escudero & Witte [2103.03249] Sandner, Escudero & Witte [2304.XXXXX]

Neutrino Cosmology in 2023

Rates for various models

Neutrino Cosmology in 2023

The case of the Majoron

Published in: Phys.Lett.B 98 (1981) 265-268

 \Box reference search \bigcirc 1,137 citations

The Majoron is the pseudo-Goldstone boson associated with the spontaneous breaking of global $U\!(1)_L$

$$\mathscr{L} = \lambda \phi \, \bar{\nu} \gamma_5 \nu \qquad \qquad \lambda = m_{\nu} / v_{\phi}$$

The case of the Majoron

CMB observations can test a well motivated neutrino mass model up to $v_L \sim v_H$

- For the region preferred at ~1 σ . We show that together with a primordial $\Delta N_{\rm eff}$ the model can lower the H₀ tension to the 3 σ level. This is 0.5-1 σ worse than what we found in Escudero & Witte 1909.04044 and 2103.03249
- The Simons Observatory will test in the next ~6 years wide regions of parameter space!

Miguel Escudero (CERN)

A light $\mu - \tau$ gauge boson

Sandner, Escudero & Witte 2305.01692

Planck rules out couplings as small as $g_{\mu- au} \sim 10^{-13}$ for $m_{Z'} \sim {
m eV}$

Conclusions

Neff: Number of relativistic neutrino species

$$N_{\rm eff}^{\rm BBN} = 2.86 \pm 0.28$$

Planck+BAO $N_{\rm eff}^{\rm CMB} = 2.99 \pm 0.17$

Standard Model $N_{\rm eff} = 3.043$

CMB and BBN measurements give strong evidence that the Cosmic Neutrino background should be there.

This implies:

BBN

- 1) a stringent constraint on many BSM models
- 2) gives us confidence to test neutrino properties with cosmology

We have performed the most accurate calculation of Neff to date and found

$$N_{\rm eff}|_{\rm SM} = 3.043$$

Conclusions

Neutrino Masses:

Cosmological bounds are very stringent within ACDM:

$$\sum m_{\nu} < 0.12 \,\mathrm{eV}$$
 at 95% CL

In addition, they are robust upon standard modifications of the model.

There are several non-standard neutrino cosmologies where this bound can be evaded

The case of a non-standard CNB to relax them

We developed a simple scenario compatible with high scale type-I seesaw

Need a large number of dark radiation species interacting with neutrinos between BBN and recombination

Parameter space of interest is $m_{Z'} \sim 10 \,\text{keV}$ and $v_{\Phi} \sim 10 \,\text{MeV} - 1 \,\text{GeV}$

As of now a fun model building exercise but could get more relevance if we were to detect something in the lab or nothing in cosmology!

Miguel Escudero (CERN)

Conclusions

Neutrino Interactions:

The CMB is a powerful probe of neutrino interactions

We have shown that there is a well defined redshift region where neutrinos must free stream

These bounds are relevant for many particle physics scenarios

Including the singlet majoron model and a light mu-tau Z'

46

 $2 \times 10^3 \lesssim z \lesssim 10^5$

Outlook: Number of Neutrinos

The next generation of CMB experiments are expected to significantly improve the sensitivity to Neff

Simons Observatory

 $\sigma(N_{\rm eff}) = 0.05$ ~2029

 $\sigma(N_{\rm eff}) = 0.03$ ~2035?

These measurements will represent an important test of the CNB and BBN in the SM and perhaps may yield a BSM signal!

Outlook: Neutrino Masses

The next generation of galaxy surveys in combination with CMB data are expected to measure the neutrino mass if the Universe is governed by a Λ CDM cosmology

DESI

EUCLID

LiteBIRD

Why? DESI: 30M galaxies and EUCLID: 50M galaxies, but BOSS 1M galaxies

This is expected to happen in the next 3-4 years: $\sigma(\sum m_{\nu}) = 0.02$ In parallel, the KATRIN experiment is taking data and should reach a sensitivity of $m_{\bar{\nu}_e} \lesssim 0.2 \,\mathrm{eV}$ at 90% CL in ~ 3-4 years.

Miguel Escudero (CERN)

Neutrino Cosmology in 2023

Hubble tension?

Local: CMB+BAO:

$$H_0 = 73.0 \pm 1.0 \,\mathrm{km/s/Mpc}$$

 $H_0 = 67.7 \pm 0.4 \,\mathrm{km/s/Mpc}$

 5σ discrepancy!

Miguel Escudero (CERN)

Global Perspective

Current knowledge:

Global Perspective

In the next 5-6 years:

Time for Questions and Comments

Upcoming years are going to be exciting!

Thank you for your attention!

miguel.escudero@cern.ch

Miguel Escudero (CERN)

Neutrino Cosmology in 2023