******************************************************************************
ALL THE INFORMATIONS ON THE PROGRAM ARE SHARED ON THE FOLLOWING LINK:
******************************************************************************
All the vidéos already on : You Tube of the Institute Pascal
https://www.youtube.com/@institutpascal7781/videos
*****************************************************************************
The goal of the program is to explore algebraic and probabilistic constructions of correlators in CFTs beyond semisimplicity. We aim to foster the interaction of practitioners in conformal field theories with mathematicians working on the underlying mathematical structures.
Scientific subjects of the program:
1. Correlation functions in CFT via representation theory of vertex operator algebras
2. Probabilistic approach to correlation functions in CFT (e.g. Liouville theory)
3 Tensor categories and quantum algebras as mathematical structures arising from CFTs
4 Quantum topology and 3d TQFT as topological tools to study correlation functions
Organisers:
Colin Guillarmou (CNRS, Laboratoire de Mathématiques d'Orsay)
Azat M. Gainutdinov (CNRS, Institut Denis Poisson, Université de Tours)
Florencia Orosz Hunziker (Mathematics Department at the University of Colorado Boulder)
David Ridout (School of Mathematics and Statistics, University of Melbourne)
Raoul Santachiara (CNRS, LPTMS, Université Paris-Saclay)
Christoph Schweigert (Mathematics Department of Hamburg University)
Scientific Committee:
Hubert Saleur (IPHT Saclay/CEA, France)
Katrina Barron (University of Notre Dame, USA)
Antti Kupiainen (University of Helsinki, Finland)
Pavel Etingof (Math Department MIT, USA)