Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

17–28 mai 2021
Fuseau horaire Europe/Paris

Session

Impact of MHD winds on disk evolution

27 mai 2021, 12:00

Description

Dust grains in disks orbiting nascent stars are the building blocks of planetesimals. The evolution of dust depends markedly on the global structure the disk (surface density profile, temperature) that is ultimately controlled by the transport of angular momentum and mass-loss processes. Recently, there has been a growing recognition that magnetic outflows launched from disks (’’MHD disk-winds’’) will have a crucial impact on disks and on the underlying dust evolution, by extracting angular momentum and creating substructures. However, the presence of MHD disk-winds remains an open question. The unique combination of sensitivity and angular resolution offered by ALMA and the future JWST is enabling us to conduct stringent tests on the presence of MHD disk-winds and inform dust evolution models. In this contribution, I will present our ongoing effort to assess the role of MHD disk-winds in disk evolution. I will review an ALMA study of the protostellar system HH212 down to 16 au scales that provides the most stringent observational test of MHD disk-winds to date. New observations of more evolved disks (Class II) will also be discussed. I will then put MHD disk-winds in the context of disk demographics as unveiled by recent ALMA and VLT- XSHOOTER surveys. I will show that wind-driven accretion can account for disk dispersal and the correlation between accretion rates and disk masses. This work is based on a simplified disk evolution model which can be used to study dust evolution and planet formation in the emerging paradigm of MHD disk-winds.

Documents de présentation

Aucun document.
Ordre du jour en construction...