Can we efficiently estimate transport coefficients (conductivities etc) in many-body quantum systems using classical computers? Drawing on lessons learned from studying scrambling and entanglement entropy dynamics in generic many-body systems, I propose an upper bound on the computational resources required to simulate transport at high temperatures: CPU time/memory $\sim...
In this work we characterize the metastable dynamics in the ferromagnetic quantum Ising chain with a weak longitudinal field subject to continuous monitoring of the local magnetization. To this end we exploit a numerical approach based on the combination of matrix product states with stochastic quantum trajectories which allows for the simulation of the trajectory-resolved non-equilibrium...
We study an exactly solvable model of monitored dynamics in a system of $N$ spin $1/2$ particles with pairwise all-to-all noisy interactions, where each spin is constantly perturbed by weak measurements of the spin component in a random direction. We make use of the replica trick to account for the Born's rule weighting of the measurement outcomes in the study of purification and other...
Local quantum measurements of many-body systems can induce phase transitions between volume and area law scaling of entanglement entropy.
Here we present a Gaussian fermionic model where continuous measurements of two non-commuting sets of observables induce a transition between area-law entanglement scaling phases of distinct topological order. We characterize the phase transition in terms...
Monitored Fermions provide a rich playground for the study of entanglement phase transitions in non-unitary quantum dynamics. We will discuss the phenomenology of entanglement transitions in several classes of monitored Hamiltonian systems and in fermion circuits and introduce effective theories describing both setups. We will then utilize adaptive feedback to reduce the configurational...
In this talk, I will discuss a variation of the standard framework of measurement-induced phase transitions, where the projective measurements are followed by control operations steering the system toward a pure absorbing state. In these dynamics, two types of phase transition occur as the rate of these control operations is increased: a measurement-induced entanglement transition, and a...
I will present the theory needed to apply a Gaussian-preserving operator to a fermionic Gaussian state. Then I will use this formalism to derive the equations of motions of a fermionic Kitaev chain following two different dynamic protocols, induced by the presence of the monitoring apparatus: a quantum-jump evolution with string operators and a quantum diffusion dynamics with long-range...
I will discuss some numerical results for the entanglement entropy dynamics
along the quantum trajectories of a fermionic Kitaev chain, in the presence of
measurements with a non-local character. The first part addresses a quantum-jump evolution with fixed-range string operators: a variety of behaviors emerge, ranging from volume-law, for extensive ranges of the string, to subvolume- and...