Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

29 novembre 2017 à 1 décembre 2017
LRI
Fuseau horaire Europe/Zurich

Learning-based strategies for the modeling and reconstruction of dynamical systems

30 nov. 2017, 13:45
1h
Auditorium Shannon (LRI)

Auditorium Shannon

LRI

Batiment 660

Orateur

Prof. Ronan Fablet (IMT Atlantique, Lab-STICC)

Description

Data-driven strategies for the modeling and reconstruction of dynamical systems emerge as promising alternatives to classical model-driven frameworks, especially when dealing with computationally-demanding models and modeling uncertainty. Data-driven strategies provide novel means to benefit from large-scale observation and/or simulation datasets.
In this talk, we will review data-driven representations of dynamical systems and their applications to the resolution of inverse problems (data assimilation). The focus will be given to analog and neural network representations and address applications to high-dimensional systems. Besides numerical experiments for chaotic systems, we will illustrate applications to the reconstruction of sea surface dynamics from satellite observations.

Some references:
R. Lguensat, P. Tandeo, P. Aillot, R. Fablet. The Analog Data Assimilation. Monthly Weather
Review, 2017.
R. Fablet, P. Viet, R. Lguensat. Data-driven Methods for Spatio-Temporal Interpolation of Sea
Surface Temperature Images. IEEE Trans. on Computational Imaging, 2017.
R. Lguensat, P. Viet, M. Sun, G. Chen, F. Tenglin, B. Chapron, R. Fablet. Data-driven
Interpolation of Sea Level Anomalies using Analog Data Assimilation. https://hal.archives-

Auteur principal

Prof. Ronan Fablet (IMT Atlantique, Lab-STICC)

Documents de présentation