Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

30 novembre 2020
Zoom
Fuseau horaire Europe/Paris

Spectral Separation of the Stochastic Gravitation Wave Background In the LISA Band

30 nov. 2020, 10:20
20m
Zoom

Zoom

Les coordonnées zoom seront transmises via email aux participants
Présentation Présentations

Orateur

Guillaume Boileau (Artemis, Observatoire de la Côte d'Azur, Université de la Côte d'Azur)

Description

In the context of the orbital modulated waveforms from the white dwarf binary gravitational foreground and the stochastic gravitational wave background (SGWB) in the LISA observation band, the Fisher Information and Markov Chains Monte Carlo methods give an estimation of the LISA noise and the parameters of the three backgrounds (galactic, astrophysical, cosmological). We simulate a complex waveform of the galactic foreground with 35 000 000 binaries. We extract an understanding of the effect of the distribution population across masses and positions in our galaxy, the stellar core type, and the orbital frequency distribution. We also predict the detectable limits for the future LISA measurement of the SGWB in the spectral domain with the three LISA channels A, E and T. We predict detectable limits for the future LISA measurement of the SGWB. Adaptive Markov chain Monte-Carlo methods are used to produce estimates with the simulated data from the LISA Data challenge (LDC). We also calculate the Cramer-Rao lower bound on the variance of the SGWB parameter uncertainties based on the inverse Fisher Information using the Whittle Likelihood. We simultaneously estimate the noise using a LISA noise model. Assuming the expected astrophysical background, a cosmological background and a galactic foreground energy density of around Ω_{GW} ≈ 1×10−12 to 1×10−13 can be detected by LISA.

Auteur principal

Guillaume Boileau (Artemis, Observatoire de la Côte d'Azur, Université de la Côte d'Azur)

Co-auteurs

Nelson Christensen Dr Astrid Lamberts (Artemis, Observatoire de la Côte d'Azur, Université Côte d'Azur,) Dr Renate Meyer ( Department of Statistics, University of Auckland, Auckland, New Zealand)

Documents de présentation