Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

8–9 nov. 2023
LKB à Paris
Fuseau horaire Europe/Paris

Update on rotating geometry experiments with polaritons

8 nov. 2023, 14:00
45m
Room 13—23.210 (access via the second floor of tower 23) (LKB à Paris)

Room 13—23.210 (access via the second floor of tower 23)

LKB à Paris

Jussieu campus. Sorbonne University, 4 Place Jussieu 75005 Paris (metro stop “Jussieu” lines 7 and 10). https://sciences.sorbonne-universite.fr/sites/default/files/media/2022-07/plan_campus_pierremariecurie_0.pdf

Orateur

Maxime JACQUET (Laboratoire Kastler Brossel, Sorbonne Université et CNRS)

Description

QFT on curved geometries has predicted a number of pair-emission processes like rotational superradiance. These occur when the acoustic field in a quantum fluid scatters on some intangible surface of the fluid. For example, superradiance results from the scattering of acoustic waves (possibly in their vacuum state) at the surface where the total velocity of the fluid exceeds the speed of sound. The twist in the fluid flow induced by the transition from sub- to supersonic velocities creates an energetic instability that yields entangled acoustic excitations on either side of the surface. Fluid acceleration and twists allow us to engineer bespoke curved geometries in the laboratory to investigate outstanding QFT effects.
At Laboratoire Kastler Brossel, we use the acoustic field in a quantum fluid of light as a model for QFT on curved geometries. The fluid of light is realised with microcavity exciton-polaritons, whose flow can be controlled all-optically while all quantum statistics of emission may be measured with spectroscopy and homodyne detection.
In this talk, I will review the basic arguments supporting the modelling of QFT in our experiment, explain how polaritons are created and manipulated in the lab and present new theoretical results on entanglement from superradiance and advances with the experiments.

Documents de présentation