Short-lived radionuclides are intriguing probes for a diverse spectrum of physics topics such as the structure of atomic nuclei or nucleosynthesis, the formation of the chemical elements. Moreover, precision studies involving radionuclides impose stringent limits on physics beyond the standard model of particle physics which are complementary and competitive to associated constraints from the...
We are investigating methods to create a novel muonium (Mu) source, based on μ+ → Mu conversion in superfluid helium (SFHe), which has the potential of providing high brightness Mu beams for next generation laser spectroscopy experiments. We are also investigating the feasibility of using such sources for measuring the gravitational interaction of Mu. The positive muon (μ+) which is dominating...
In 2014, Romania became full member of the Pierre Auger Collaboration, represented by four national institutions in Bucharest. Since then at the ISS we have in addition joined the task force of Auger in spreading physics studied at the Pierre Auger Observatory through education and outreach activities. In this poster, I’ll present such activities we’ve contributed with in the field of...
The study of the atomic nucleus has occupied nuclear physicists for over a century now. Of the many experimental tools that were over the decades, laser spectroscopy has been pivotal in expanding our knowledge, by bringing to light many new and exciting phenomena. Of all elements, the so-called refractory elements have been studied the least so far. These elements, found mostly in groups...
This contribution reports on an experiment performed in GANIL in July 2017 with the AGATA tracking array coupled to the PARIS scintillator array and the VAMOS magnetic spectrometer. Aim of the measurement was the determination of the lifetimes of excited states in neutron rich C and O isotopes, in particular in 16C and 20O. For these nuclei, ab-initio calculations predict a strong sensitivity...
IceCube is the world's largest neutrino telescope located at the geographical South Pole. Next to its astrophysical program, IceCube has a rich particle physics program including searches for phenomena beyond the standard model. This includes indirect searches for dark matter, searches for magnetic monopoles, mixing with sterile neutrinos, and non-standard neutrino interactions. An overview of...
The radio detection technique is successfully used for the measurement of air showers initiated by charged cosmic rays. So far, this is applicable to cosmic ray primaries with energies above 40 PeV. An extension of this detection method can be made for the observation of air showers originating from neutrinos and gamma rays of high energy. Recent results from a simulation study performed for...
Recently the coherent scattering of neutrinos off nuclei (CNNS) was experimentally proven. The signal characteristics are very similar to the anticipated scatterings of dark matter particles off nuclei. In particular both share a recoil spectrum steeply falling with energy and ending at maximally a few keV. Thus, also the experimental requirements are similar: a low energy threshold for...
We present results of a search for diffuse photons with energies higher than 1 EeV based on Telescope Array experiment surface detector data and a machine learning event analysis technique. Results of a search for point sources of photons for all directions in the Northern hemisphere and a search for some target classes of photon sources are also presented.
The read-out electronics for complex particle detectors need to meet technological constraints such as operating at top performance and high-speed in environments with hard radiation: hard hadrons spectra and very large Total Ionization Dose (TID). Being exposed to a harsh mixt-radiation field, the semiconductor devices must defy progressive degradation and susceptibility to singular failures....
Very-high-energy gamma-rays are linked to high-energy phenomena in the Universe. The Southern Wide field-of-view Gamma-ray Observatory (SWGO) is a newly formed international collaboration to design and build a new observatory to be placed in the Andes at an altitude of around 5000 m. This observatory, being at the Southern hemisphere, would be able to monitor the galactic center, search for...
One overarching objective of science is to further our understanding of the universe, from its early stages to its current state and future evolution. This depends on gaining insight on the universe’s most macroscopic components, for example galaxies and stars, as well as describing its smallest components, namely elementary particles and nuclei and their interactions. It is clear that this...
This poster will present studies of a new form of nuclear matter called the quark-gluon plasma (QGP). This medium is believed to be present during the early stages of the evolution of the Universe, just few microseconds after the Big Bang. Today, it can be recreated in ultrarelativistic heavy-ion collisions at RHIC at BNL, or at the LHC at CERN. One of the most suitable probes to study this...