Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

3–7 juil. 2023
Cité des sciences et de l'Industrie, Paris
Fuseau horaire Europe/Paris

Entangled photonic qudits encoded in 21GHz spaced frequency bins generated on-chip using a silicon microring for Quantum Communications with telecom devices.

5 juil. 2023, 09:10
20m
Amphi Gaston Berger

Amphi Gaston Berger

Contribution orale MC8 Dernières avancées dans le domaine des technologies quantiques Mini-colloques: MC08 Dernières avancées dans le domaine des technologies quantiques

Orateur

George CRISAN (Centre de Nanosciences et de Nanotechnologies, C2N)

Description

High dimensional quantum states, qudits, leverage the ability to store more information in a single photon. They can be used for quantum computing and quantum cryptography, as they are also enable more tolerant to noise [1]. Frequency domain, for example, grants access to a high dimensional Hilbert space. It is furthermore compatible with integration and can leverage multiplexing, since all frequency components can travel in a single fiber. Recent works demonstrated on-chip generation of frequency entangled qudits using micro-ring resonators [2, 3] with a dimension up to D = 8, at telecom wavelengths. The generation of qudits of dimension up to D = 4 has also been demonstrated with an array of four Silicon-On-Insulator (SOI) micro-resonators [4].

In this work, we use a SOI micro-ring resonator to generate frequency-bin entangled photon pairs through four-wave mixing (FWM) non linear process. The frequency bins are separated by a free spectral range (FSR) of 21GHz (see Fig.1 a). The FSR smaller than the 200 GHz FSR harnessed in [3] allows us to manipulate the photon pairs using off-the-shelf electro-optic modulators (EOM) and programmable filters (PF) (see Fig. 1 b). Commercial EOMs are limited to 40 GHz. The PFs select the frequency modes of interest while the EOM enable scattering in a supperposition of modes. We measure quantum interferences of qudits up to D = 5 (see Fig. 1 c and d).

The broadband emission of our source allows us to generate up to 9 pairs of frequency entangled qutrits (qudits with D = 3) over a 5 THz bandwidth, each displaying two-photon interference visibility higher than 90% (see Fig. 1 e). Therefore we can create a fully connected Quantum Key Distribution (QKD) network between up to five users, using high dimensional quantum states.

Fig. 1: https://i.postimg.cc/s2GJZw9r/Figure-1.png

a) Sketch of the emission spectrum of the microring resonator. b) Setup for manipulation of frequency entangled qudits. c) and d) Two-photon interferences of qudits, e) visibility of qutrit (D = 3) interferences over the emission bandwidth. FWM : four wave mixing, ωp : Pump frequency, Sn and In : Signal and Idler entangled photons, FSR : free spectral range, EOM : electro-optic modulator, PF : programmable filters.

References:

[1] Nicolas J. Cerf et al. Security of Quantum Key Distribution Using d-Level Systems. Phys. Rev. Lett. 88, 127902 (2002).

[2] Hu Hsuan-Hao et al. Bayesian Tomography of High-Dimensional
on-Chip Biphoton Frequency Combs with Randomized Measurements
. Nature
Communications 13, n° 1 (2022).

[3] M. Kues et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, n° 7660 (2017).

[4] Marco Clementi et al. A reconfigurable silicon photonics chip for the generation of frequency bin entangled qudits. arXiv 2301.08475 (2023).

Affiliation de l'auteur principal Centre de Nanosciences et de Nanotechnologies, C2N

Auteur principal

George CRISAN (Centre de Nanosciences et de Nanotechnologies, C2N)

Co-auteurs

M. Antoine Henry (LTCI, Télécom Paris, Institut Polytechnique de Paris, C2N) Dr Dario Fioretto (Centre de Nanosciences et de Nanotechnologies, C2N) Carlos Ramos (Centre de Nanosciences et de Nanotechnologies, C2N) Eric Cassan (Centre de Nanosciences et de Nanotechnologies, C2N) Laurent Vivien (Centre de Nanosciences et de Nanotechnologies, C2N) Stéphane Monfray (STMicroelectronics SAS) Frederic Boeuf (STMicroelectronics SAS) Kamel Bencheikh (Centre de Nanosciences et de Nanotechnologies, C2N) Prof. Isabelle Zaquine (LTCI, Télécom Paris, Institut Polytechnique de Paris) Dr Pascale Senellart-Mardon (Centre de Nanosciences et de Nanotechnologies, C2N) Dr Nadia Belabas (Centre de Nanosciences et de Nanotechnologies, C2N)

Documents de présentation