Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

3–7 juil. 2023
Cité des sciences et de l'Industrie, Paris
Fuseau horaire Europe/Paris

Broadband Biphoton Generation and Polarization Splitting in a Monolithic AlGaAs Chip

5 juil. 2023, 09:50
20m
Amphi Gaston Berger

Amphi Gaston Berger

Contribution orale MC8 Dernières avancées dans le domaine des technologies quantiques Mini-colloques: MC08 Dernières avancées dans le domaine des technologies quantiques

Orateur

Othmane Meskine (Université Paris Cité, CNRS, Laboratoire Matériaux et Phénoménes Quantiques, 75013 Paris, France)

Description

Summary
Integrated quantum photonics is a key tool towards large scale quantum technologies. In this work we present an AlGaAs-based photonic circuit for on-chip generation and manipulation of broadband orthogonally polarized photon pairs [1]. Among different platforms used for the development of quantum photonic chips AlGaAs is extremely interesting for integrability [2]. This material has a direct bandgap, enabling monolithic integration of active components [3] and presents a large electro-optic effect that can be exploited for the manipulation of photonic states [4]. In this work, broadband orthogonally polarized photon pairs are generated by Type-II spontaneous parametric down conversion in AlGaAs Bragg reflection waveguides at telecom wavelengths and room temperature [5]. Orthogonally polarized photons are deterministically separated over a broadband frequency range through a birefringent directional coupler. This device is based on evanescently coupled waveguides; by a careful design of an induced birefringence, photons of the pair are separated, following their different polarizations, in two different spatial modes. We demonstrate that 85% of the pairs are deterministically separated over a 60 nm bandwidth. The performances of the device as a quantum photonic circuit are assessed by implementing at the chip output a Hong-Ou-Mandel interferometer, one of the most fundamental nonclassical experiments in quantum optics lying at the heart of many quantum logic operations; the obtained visibility is 75.5% for a 60 nm-broad biphoton state. These results, obtained at room temperature and telecom wavelength represent a significant step towards real-world quantum photonic integrated circuits working in the broadband regime.

Reference
1) F. Appas et al. “Broadband biphoton generation and polarization splitting in a monolithic AlGaAs chip”, ACS Photonics 2023 , “https://doi.org/10.1021/acsphotonics.2c01900”
2) F. Appas et al., "Nonlinear Quantum Photonics With AlGaAs Bragg-Reflection Waveguides," in Journal of Lightwave Technology, vol. 40, no. 23, pp. 7658-7667, (2022)
3) F. Boitier et al. “Electrically injected photon-pair source at room temperature”, Phys. Rev. Lett. 112, 183901 (2014)
4) J. Wang et al. “Gallium arsenide (GaAs) quantum photonic waveguide circuits” Optics Communications 327, 49 (2014)
5) F. Appas et al. “‘Flexible entanglement-distribution network with an AlGaAs chip for secure communications’ npj Quantum Information 7, 118 (2021)

Affiliation de l'auteur principal Université Paris Cité, CNRS, Laboratoire Matériaux et Phénoménes Quantiques, 75013 Paris, France

Auteurs principaux

Florent Baboux (Université Paris Cité, CNRS, Laboratoire Matériaux et Phénoménes Quantiques, 75013 Paris, France) Félicien Appas (Université Paris Cité, CNRS, Laboratoire Matériaux et Phénoménes Quantiques, 75013 Paris, France) Maria I. Amanti (Université Paris Cité, CNRS, Laboratoire Matériaux et Phénoménes Quantiques, 75013 Paris, France) Othmane Meskine (Université Paris Cité, CNRS, Laboratoire Matériaux et Phénoménes Quantiques, 75013 Paris, France) Sara Ducci (Université Paris Cité, CNRS, Laboratoire Matériaux et Phénoménes Quantiques, 75013 Paris, France)

Co-auteurs

Aristide Lemaître (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France) José Palomo (Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, 75005 Paris, France)

Documents de présentation