Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

3–7 juil. 2023
Cité des sciences et de l'Industrie, Paris
Fuseau horaire Europe/Paris

Development and study of a plasma source dedicated to the atmospheric pressure spatial atomic layer deposition

Non programmé
20m
Centre des Congrès de la Villette (Cité des sciences et de l'Industrie, Paris)

Centre des Congrès de la Villette

Cité des sciences et de l'Industrie, Paris

Poster MC23 Plasmas industriels pour la microélectronique et les nouveaux matériaux Session Poster 2: MC1, MC4, MC8, MC10, MC12, MC14, MC20, MC21, MC23, MC24, MC25, REDP

Orateur

Mlle Tian Tian (GREMI)

Description

Atmospheric pressure non-thermal plasma is widely used for various nanoscale material fabrication techniques [1], which are becoming increasingly critical for optoelectronics materials and devices, such as composite transparent conductive electrodes and all-oxide solar cells [2]. In particular, plasma has been demonstrated to assist the atmospheric pressure spatial atomic layer deposition (AP-SALD) processes by providing expected reactive species to improve the thin film, lower the deposition temperature and expand the range of materials that can be deposited [3].

In this communication, we first designed and developed an atmospheric pressure plasma reactor which maybe can be coupled to an AP-SALD head [4]. The plasma was generated using sur-face dielectric barrier discharge (SDBD) which was placed in a 3D-printed resin box. Such a reactor was powered by a homemade, compact, high-voltage pulse power supply, which deliv-ers high power to create a plasma with sufficiently high energy density to ensure enough active species, to assist the thin film deposition, such as atomic oxygen [4], ozone [5] and atomic ni-trogen. An electrical investigation of the whole system was conducted, and the power dissipated by the reactor was proportional to the applied HV pulse amplitude. A spectroscopic study to identify the active species produced by the plasma proved the existence of oxygen atom and dinitrogen ion, and the oxygen atom increased with the applied HV pulse amplitude.

References
[1] H. Conrads and M. Schmidt, Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9(4), 441–454, 2000.
[2] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges, Journal of Vacuum Science & Technology A, 29(5), 050801, 2011.
[3] H. C. M. Knoops, T. Faraz, K. Arts, and W. M. M. (Erwin) Kessels, Status and prospects of plasma-assisted atomic layer deposition, Journal of Vacuum Science & Technology A, 37(3), 030902, 2019.
[4] V. H. Nguyen et al., Atmospheric Plasma-Enhanced Spatial Chemical Vapor Deposition of SiO2 Using Trivinylmethoxysilane and Oxygen Plasma, Chem. Mater., 32(12), 5153–5161, 2020.
[5] A. Sekkat et al., Selective spatial atomic layer deposition of Cu, Cu2O, and CuO thin films in the open air: reality or fiction?, Materials Today Chemistry, 29, 101431, 2023.

Affiliation de l'auteur principal GREMI

Auteur principal

Mlle Tian Tian (GREMI)

Co-auteurs

M. Gervais Blondel NDIFFO YEMELI (GREMI) Dr Hervé RABAT (GREMI) Dr David MUÑOZ-ROJAS (LMGP) Dr Olivier AUBRY (GREMI) M. Gilles CHARLES (GREMI) M. Julien LEMAIRE (GREMI) Prof. Dunpin HONG (GREMI)

Documents de présentation

Aucun document.