Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

3–7 juil. 2023
Cité des sciences et de l'Industrie, Paris
Fuseau horaire Europe/Paris

Hidden magnetic texture in the pseudogap phase of high-Tc superconducting YBa2Cu3O6+x

7 juil. 2023, 09:15
15m
Amphi Gaston Berger

Amphi Gaston Berger

Contribution orale MC21 Matériaux quantiques : des prédictions à l'observation Mini-colloques: MC21 Matériaux quantiques : des prédictions à l'observation

Orateur

Dalila Bounoua (Laboratoire Léon Brillouin, CEA-Saclay)

Description

Despite decades of intense researches, the enigmatic pseudo-gap (PG) phase of superconducting cuprates remains an unsolved mystery. In the last 15 years, condensed matter physicists discovered that this phase hosts symmetry breaking states as an intra-unit cell (or q=0) magnetism, interpreted in terms of loop current patterns [1], preserving lattice translation (LT) and breaking time-reversal and parity symmetries, followed, upon cooling, by an additional incipient charge density wave [2] breaking the LT symmetry. However, none of these states can (alone) account for the partial gapping of the Fermi surface.

Our recent polarized neutron diffraction measurements in YBa2Cu3O6+x single crystals with different hole-doping levels [3-4] reveal a novel hidden bi-axial magnetism that may be crucial to elucidate the PG puzzle. This short-range magnetism (typical correlations over 5-6 unit cells), carried by the CuO2 layers, settles in at the PG onset temperature. Distinct from the q=0 magnetism, its planar propagation wave vector is (π,0)≡(0,π), yielding a (2x2) quadrupling of the magnetic unit cell (q=1/2 magnetism). It further displays a strong out-of-plane anisotropy of the associated magnetic moments, predominantly pointing perpendicular to the CuO2 planes.

We discovered that the q=0 and q=1/2 magnetisms could be embedded within a single complex and highly spread-out magnetic texture. This phase could correspond to the smallest possible domain of LC supercell breaking LT, recently proposed to account for the PG opening [5]. The existence of such a broad magnetic texture reveals an unexpected aspect of the PG physics that may modify our understanding of that state of matter.

[1] P. Bourges, D. Bounoua, Y. Sidis, C.R. Phys 22, 1 (2021).
[2] B. Keimer et al., Nature 518, 179 (2015).
[3] D. Bounoua et al., Comm. Phys 5, 268 (2022)
[4] D. Bounoua et al, arXiv:2302.01870 (2023), under review in Phys. Rev. B.
[5] C.M. Varma, Phys. Rev. B, 99, 224516 (2019).

Affiliation de l'auteur principal Université Paris-Saclay, CNRS-CEA, Laboratoire Léon Brillouin, Gif sur Yvette, France

Auteur principal

Dalila Bounoua (Laboratoire Léon Brillouin, CEA-Saclay)

Co-auteurs

Dr Frédéric Bourdarot (Institut Laue-Langevin, Grenoble, France) Dr Jun Qian (Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China) Mlle Lin Shan GuO (Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China) Dr Lucile Magnin-Thro (Institut Laue-Langevin, Grenoble, France) Dr Martin Boehm (Institut Laue-Langevin, Grenoble, France) Dr Paul Steffens (Institut Laue-Langevin, Grenoble, France) Dr Philippe Bourges (Université Paris-Saclay, CNRS-CEA, Laboratoire Léon Brillouin, Gif sur Yvette, France) M. Toshinao Loew (Max Planck Institute for Solid State, Stuttgart, Germany) Dr Victor Balédent (Université Paris-Saclay, Laboratoire de Physique des Solides, Orsay, France) Prof. Xin Yao (Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China) Dr Yvan Sidis (Université Paris-Saclay, CNRS-CEA, Laboratoire Léon Brillouin, Gif sur Yvette, France)

Documents de présentation