Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

3–7 juil. 2023
Cité des sciences et de l'Industrie, Paris
Fuseau horaire Europe/Paris

New insights on the glass transition through optical manipulation of chromophores

3 juil. 2023, 17:25
13m
Salle Louis Armand Est

Salle Louis Armand Est

Contribution orale MC15 Matière molle : des concepts fondamentaux à la fabrication de systèmes originaux Mini-colloques: MC15 Matière molle : des concepts fondamentaux à la fabrication de systèmes originaux

Orateur

Mx Eden Dzik (CEA Saclay)

Description

Why do supercooled liquids dynamics slow down so abruptly upon cooling towards the glass transition temperature Tg? This difficult question can be explored, among other techniques, with local probes, such as azobenzene-grafted molecules. They isomerize and orient themselves under polarized illumination, and their dynamics is affected by the glass matrix [1]. They are also proven to modify glass properties, as used for photo-induced mass transport in glassy polymers [2]. This strong coupling should allow to use these optically active molecules to change the dynamics of glasses at the scale of dynamical heterogeneities. Here, by using a pump-probe optical set-up on an azobenzene-doped molecular glass, we build up and measure the orientation parameter and cis-isomers fraction. At the same time, we follow the dynamics of the material by dielectric spectroscopy. With only 1% of azobenzene-grafted molecules, we observe a jump in the dielectric phase δ when the pump light is turned on with a maximum at T=370K (close to Tg=363K). This effect is robust, i.e. it is similar when exciting only at 365nm (trans absorption peak) and also when adding a 450nm excitation (cis peak). Because δ is only sensitive to the relaxation time τα, we thus conclude that the relaxation time of the glass matrix varies significantly under illumination. Our results will be compared to a recent RFOT prediction [3] about the photo-activation of glassy dynamics around Tg. We will show that our experiment unveils new fundamental aspects of the glass transition.

REFERENCES
1. R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).
2. P. Rochon, E. Batalla and A. Natansohn., Appl. Phys. Lett 66, 136 (1995).
3. V. Lubchenko and P.G. Wolynes, J. Phys. Chem. B 124, 8434 (2020).

Affiliation de l'auteur principal CEA Saclay

Auteur principal

Mx Eden Dzik (CEA Saclay)

Co-auteurs

M. Christophe Fajolles (CEA Saclay) Mme Cécile Wiertel-Gasquet (CEA Saclay) M. David Carrière (CEA Saclay) M. François Ladieu (CEA SAclay) M. Jean-Pierre Dognon (CEA Saclay)

Documents de présentation