Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

3–7 juil. 2023
Cité des sciences et de l'Industrie, Paris
Fuseau horaire Europe/Paris

Cosmological structure formation with negative mass

5 juil. 2023, 09:00
25m
Salle Violette Brisson

Salle Violette Brisson

Contribution orale MC6 La gravitation et l'antimatière Mini-colloques: MC06 La gravitation et l'antimatière

Orateur

Giovanni MANFREDI (Institut de Physique et Chimie des Matériaux de Strasbourg)

Description

The possible existence of particles with negative mass has long been considered, starting from the seminal work of H. Bondi [1]. In a cosmological context, it was shown more recently that negative mass solutions are viable in a de Sitter universe [2]. Negative masses have also been considered in bi- and multi-metric extensions of General Relativity [3].

Besides, one cannot but note the peculiarity of the standard cosmological model, which - although impressively concordant on primordial nucleosynthesis, cosmic microwave background, baryonic acoustic oscillations, and supernovae luminosity distances - features an odd composition, with dark matter and dark energy, two unidentified components, supposedly representing approximately 96% of the mass/energy content of the Universe.

In this broad context, Benoit-Levy and Chardin [4] proposed a symmetric matter-antimatter universe where antimatter particles possess a negative gravitational mass. Such "Dirac-Milne" universe appears as gravitationally empty (or coasting) at large scales and is remarkably concordant without any adjustable parameter, in particular without the need for a dark energy component [5].

In order to explore such alternative cosmological scenarios, we constructed a family of Newtonian non-relativistic models with equal amounts of particles with negative and positive gravitational mass, which includes the Dirac-Milne scenario as a special case. We perform N-body numerical simulations of these negative-mass models for an expanding one-dimensional universe and study the associated formation of large-scale gravitational structures, focusing in particular on the Dirac-Milne case. The differences and analogies with a matter-dominated Einstein-deSitter universe and with the standard $\Lambda$CDM cosmological model are highlighted and discussed [6]. On a local scale, the Dirac-Milne model is shown to reproduce some of the features usually attributed to dark matter, or to modified Newtonian dynamics (MOND) theories [7].

References
[1] H. Bondi, Rev. Mod. Phys. 29, 423 (1957).
[2] S. Mbarek and M.B. Paranjape, Phys. Rev. D 90, 101502 (2014).
[3] M. Hohmann and M. N. R. Wohlfarth, Phys. Rev. D 80, 104011 (2009); S. Hossenfelder, Phys. Rev. D 78, 044015 (2008).
[4] A. Benoit-Levy and G. Chardin, Astronomy & Astrophysics 537, A78 (2012).
[5] G. Chardin, G. Manfredi, Hyperfine Interactions, 239: 45 (2018); arXiv:1807.11198
[6] G. Manfredi, J.-L. Rouet, B. Miller, G. Chardin, Phys. Rev. D 98, 023514 (2018); Phys. Rev. D 102, 103518 (2020).
[7] G. Chardin, Y. Dubois, G. Manfredi, B. Miller, C. Stahl, Astronomy & Astrophysics 652, A91 (2021).

Affiliation de l'auteur principal Centre National de la Recherche Scientifique

Auteur principal

Giovanni MANFREDI (Institut de Physique et Chimie des Matériaux de Strasbourg)

Co-auteurs

Jean-Louis Rouet (Université d'Orléans) Bruce Miller (Texas Christian University) Gabriel Chardin (CNRS)

Documents de présentation